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SURFACE CRITICALITY IN RANDOM FIELD SYSTEMS
WITH CONTINUOUS SYMMETRY

A.A. Fedorenko

We study the surface scaling behavior of a d-dimensional random field system
with continuous O(N) symmetry. The system undergos a paramagnetic-
ferromagnetic transition above the lower critical dimension dlc = 4 for
N > Nc = 2.835. Below the lower critical dimension and for N < Nc the
system exhibits a quasi-long-range order with zero order parameter and a
power-law decay of correlations. Using functional renormalization group we
obtain the surface scaling laws describing the ordinary surface transition for
d > dlc and the behavior of correlations near the surface in the quasi-long-
range ordered phase for d < dlc

1. Introduction

Understanding of the critical properties of disordered systems attracted growing
interest for decades. Among the most challenging problems is the critical behavior
of the so-called random field systems in which the order parameter is linearly
coupled to a random symmetry breaking field [19]. The effect of the random field
(RF) disorder being more profound than many other types of disorder is much less
understood. The prominent example is the random field Ising model (RFIM) whose
complete understanding is still lacking despite significant numerical, analytical and
experimental efforts [26]. The considerable progress has been achieved in recent
years for the O(N) symmetric random field models. These models are relevant for
diverse physical applications including amorphous magnets [18], liquid crystals in
porous media [3, 12], nematic elastomers [17], critical fluids in aerogels [7, 9, 24],
vortices in type II superconductors [2], and stochastic inflation in cosmology [20].
It was found that the expansion around the lower critical dimension of the the
RF O(N) model dlc = 4 generates an infinite number of relevant operators whose
flow can be studied using functional renormalization group [13, 15, 22, 31, 32].
Another challenging issue is the phase diagram of the RF systems below dlc. It is
known that for the RF model true long-range order is forbidden below dlc = 4 [6].
Nevertheless, quasi-long-range order (QLRO) with zero order parameter and an
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infinite correlation length can persist even for d∗lc(N) < d < dlc, where d∗lc(N) is
the lower critical dimension for the paramagnetic-QLRO transition.

In general, the presence of boundaries in real systems can modify the behavior
in the boundary region extended in the bulk only over distances of the order of
the bulk correlation length. However, at the bulk critical point or in the QLRO
phase, the bulk correlation length is infinite so that one can expect that the effect
of boundaries is to be more pronounced. Indeed, the presence of the boundaries
introduces a whole set of critical exponents describing the scaling behavior at and
close to the boundary at criticality [1]. Several different classes of the surface
transitions are known depending upon boundary conditions [23]. The different
types of surface transitions have been studied for various systems with discrete
and continuous symmetries using different methods, such as RG and numerical
simulations [4, 28, 33]. However, not so much is known about the surface crit-
icality in systems with RF disorder. The phase diagram of the 3D semi-infinite
RFIM as a function of the ratio of bulk and surface interactions and the ratio of
bulk and surface fields has been studied using a mean field approximation in [29].
The surface criticality of the RFIM has been studied numerically in [21]. It was
also shown that the RF disorder on the surface of a 3D spin system with contin-
uous symmetry destroys the long-range order in the bulk, and, instead, a QLRO
emerges [14]. In this work we address the question of how the RF disorder in the
bulk affect the behavior of spin systems with continuous symmetry in vicinity of
free surfaces. We will consider the ordinary surface transition of the RF systems
for d > 4 and the order parameter correlations in the QLRO phase near a free
surface for d < 4.

2. Model

Let us consider a d-dimensional semi-infinite O(N) spin system whose con-
figuration is given by the N -component classical vector field s(r) satisfying the
fixed-length constraint |s(r)|2 = 1. The position vector r = (x, z) has a (d − 1)-
dimensional component x parallel to the surface and a one-dimensional component
z ≥ 0 that is perpendicular to the surface z = 0. It is convenient to introduce
short notations for the volume integral over half space

∫
V

:=
∫∞

0
dz
∫
dd−1x and for

the surface integral
∫
S

:=
∫
dd−1x. The large-scale behavior of the disordered spin

system can be described by the effective Hamiltonian

H [s] = H0 [s] +Hsurf [s] +Hdis [s] , (1)

consisting of the sum of three terms which result from the semi-infinite bulk,
surface and disorder in the bulk. The contributions from the semi-infinite bulk and
the surface can be written in its simplest form as [5]:

H0 [s] =

∫
V

[
1

2
(∇s(r))2 − h · s(r)

]
, Hsurf [s] = −

∫
S

h1 · s(x), (2)

where for simplicity we assume that the surface magnetic field h1 has the same
direction as the bulk field h. We consider a quite general type of bulk disorder
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such that its potential can be expanded in spin variables as follows

Hdis [s] = −
∫
V

∞∑
µ=1

∑
i1...iµ

h
(µ)
i1...iµ

(r)si1(r)...siµ(r). (3)

The coefficients h(µ)
i1...iµ

(r) are Gaussian random variables with zero mean and vari-
ances given by

h
(µ)
i1...iµ

(r)h
(ν)
i1...jν

(r′) = δµνδi1j1 ...δiµjνrµδ(r− r′). (4)

The first two coefficients have simple physical interpretation: h
(1)
i is a random

magnetic field and h
(2)
ij is a second-rank random anisotropy. The higher order

coefficients h(µ) are higher order random anisotropies. As was shown in [15], even
if the system has only finite number of nonzero bare h(µ), the RG transformations
will generate an infinite set of higher-order anisotropies.

To average over disorder we use the replica trick and introduce n replicas of the
original system. Averaging their joint partition function over disorder we obtain
the replicated Hamiltonian as

Hn =

∫
V

{
n∑
a=1

[
1

2
(∇sa(r))2 − h · sa(r)

]
−

− 1

2T

n∑
a,b=1

R (sa(r) · sb(r))

}
−

n∑
a=1

∫
S

h1 · sa(x), (5)

where we have defined the function R(z) =
∑

µ rµz
µ. The properties of the original

disordered system (1) can be extracted in the limit n→ 0.
Power counting shows that dlc = 4 is the lower critical dimension of the

model (5). Above the lower critical dimension the RF systems undergo a param-
agnetic - ferromagnetic transition. The scaling behavior at criticality is controlled
by a zero temperature fixed point (FP) similar to the RFIM, reflecting the fact
that disorder dominates over the thermal fluctuations. However, the temperature
is dangerously irrelevant. For instance, this results in violation of the usual hy-
perscaling relation and the appearance of a new universal exponent θ that modifies
the hyperscaling relation to [26]:

ν(d− θ) = 2− α, (6)

where ν and α are the correlation length and the specific heat exponents. One
also expects a dramatic slowing down as the transition is approached with the
characteristic relaxation time ln τ ∼ t−νθ1 , where t1 = |T − Tc|/Tc is the reduced
temperature [16]. The magnetization in the bulk and on the surface vanish at the
transition according to

σ(t1) ∼ tβ1 , σ1(t1) ∼ tβ1

1 , (7)
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where we have introduced the bulk and the surface magnetization exponents. At
the critical point t1 = 0 small magnetic field in the bulk h and on the surface h1

can induce the magnetization in the bulk and also on the surface according to

σ(h) ∼ h1/δ, σ1(h) ∼ h1/δ1 , σ1(h1) ∼ h
1/δ11

1 , (8)

where we define the exponents δ, δ1 and δ11. Below the lower critical dimension dlc

a QLRO phase with zero magnetization can emerge. At criticality or in the QLRO
phase, the correlation functions of the order parameter exhibit scaling behavior.
Due to dangerous irrelevance of the temperature the connected and disconnected
correlation functions scale with different exponents. We define the connected and
disconnected correlation functions of the two local operators A and B as

[A(r) ·B(r′)]con := 〈A(r) ·B(r′)〉 − 〈A(r)〉 · 〈B(r′)〉,
[A(r) ·B(r′)]dis := 〈A(r)〉 · 〈B(r′)〉 − 〈A(r)〉 · 〈B(r′)〉.

Here the angular brackets denote the thermal averaging and the overbar stands for
the disorder averaging. For instance, the connected and disconnected correlation
functions of spins in the bulk scale independently as

[s(r) · s(r′)]con ∼
1

|r− r′|d−2+η
, [s(r) · s(r′)]dis ∼

1

|r− r′|d−4+η̄
. (9)

Following the general scaling picture of the surface critical phenomena we intro-
duce the surface exponents η⊥ and η̄⊥ which replace the bulk exponents η and η̄ in
equations (9) when one of the points r or r′ belongs to the surface:

[s(x, z) · s(x′, 0)]con ∼
1

((x− x′)2 + z2)(d−2+η⊥)/2
, (10)

[s(x, z) · s(x′, 0)]dis ∼
1

((x− x′)2 + z2)(d−4+η̄)/2
. (11)

We also define the surface exponents η‖ and η̄‖ that describe the connected and
disconnected correlation function when both points lie on the surface:

[s(x) · s(x′)]con ∼
1

|x− x′|d−2+η‖
, [s(x) · s(x′)]dis ∼

1

|x− x′|d−4+η̄‖
. (12)

3. Functional renormalization group

In the limit of low temperature and weak disorder the configuration of the
system is fluctuating around the completely ordered state in which all replicas of all
spins align along the same direction which is parallel to h and h1. It is convenient
to split the order parameter sa = (σa,πa) into the (N − 1)-component vector πa
which is perpendicular to this direction and the component σa =

√
1− π2

a being



18 A.A. Fedorenko. Surface Criticality in Random Field. . .

parallel to this direction. Then the effective action of the system can be written as

S[π] =
1

T

n∑
a=1

{∫
V

[
1

2
(∇πa)2 +

(πa · ∇πa)2

2(1− π2
a)
− hσa

]
−
∫
S

h1 σa

}
−

− 1

2T 2

n∑
a,b=1

∫
V

R (πa · πb + σaσb) . (13)

In general one has to add to the action (13) the terms like δd(0)
∫
V

ln(1 − π2
a)

generated by the Jacobian of the transformation from sa to πa. However, in what
follows we will use the dimensional regularization scheme [5] in which δd(0) = 0
so we can ignore these terms in action (13) from the beginning.

Let us denote averaging with the action (13) by double angular brackets and
introduce the following correlation functions

G
(L,K)
α,β (r,x) =

〈〈
L∏
ν=1

παν (rν)
K∏
µ=1

πβµ(xµ)

〉〉
, (14)

where L points r = (r1, ..., rL) are off surface and K points x = (x1, ...,xK) are sit-
ing on the surface. In equation (14) we have used a short notation α = (α1, ..., αL)
where each αν stands for the component number iν and the replica number aν .
The similar holds for β. Using correlation functions (14) one can compute the
connected and disconnected functions defined in equations (9). However, since we
are interested only in the scaling behavior it is more convenient to consider the
similar correlation functions not for s but for π fields.

Expanding the effective action (13) in small π we will treat the quadratic part
as a free action and the rest of the infinite series as interaction vertices. Then the
correlation functions (14) can be expressed in terms of Feynman diagrams which
give the low temperature and small disorder expansion. In practical calculations
it is convenient to perform the Fourier transform with respect to x: π̂(q, z) =∫
dd−1xπ(x, z)e−iq·x and define

∫
q

:=
∫
dd−1q/(2π)d−1. The quadratic terms give

the free propagator

Ĝ(0)
q (z, z′) =

1

2q̄

[
e−q̄|z−z

′| +
q̄ − h1

q̄ + h1

e−q̄(z+z
′)

]
, (15)

where we have introduced the shorthand notation q̄ := (q2 +h)1/2. The free surface
corresponds to the limit h1 → 0 in which equation (15) becomes the Neumann
propagator consisting of the bulk part and the image part. In what follows we will
use the Neumann propagator as the bare one and treat the terms proportional to
h1 as soft insertions [5,11].

The correlation functions (14) calculated perturbatively in small disorder and
temperature suffer from the ultraviolet divergences. To avoid mixture with infrared
singularities in the O(N)-noninvariant correlation functions it is convenient to keep
h 6= 0. The ultraviolet divergences can be converted into poles in ε = d − 4 using
dimensional regularization. To renormalize the theory one has to absorb these
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poles into finite number of Z-factors. However, all the Taylor coefficients rµ of
the disorder correlator R(φ) turn out to be relevant operators so that one has
to introduce renormalization of the whole function. Since the scaling behavior is
controlled by a zero temperature FP we will disregard all terms involving more
than two replicas which are suppressed in the limit T → 0. The renormalization
of the disorder simplifies by changing variables: R(φ) = R(z) where z = cosφ, for
instance, R′(1) = −R′′(0). In terms of the variable φ, the function R(φ) becomes
periodic with period 2π in the RF case. The relation between the renormalized and
the bare correlation functions reads

G(L,K)(r;T, h, h1, R, µ) = Z−(L+K)/2
π Z

−K/2
1 G̊(L,K)(r; T̊ , h̊, h̊1, R̊). (16)

where circles denote the bare quantities and µ is an arbitrary momentum scale.
The ultraviolet divergences are absorbed into Z-factors according to

π̊ = Z1/2
π π, π̊|s = (ZπZ1)1/2 π|s , h̊ = µ2ZTZ

−1/2
π h, (17)

h̊1 = µZT (ZπZ1)−1/2h1, T̊ = µ2−dZTT, R̊ = µ4−dK−1
d ZR[R], (18)

where (2π)dKd = 2πd/2/Γ(d/2) is the surface area of a d-dimensional unit sphere
and Γ(x) is the Euler gamma function. In equation (18) ZR[R] is a functional
acting on the renormalized disorder correlator R(φ) which has the following loop
expansion:

ZR[R] = R + δ(1)(R,R) + δ(2)(R,R,R) + ..., (19)

where δ(1)(R,R) is bilinear in R and proportional to 1/ε, while δ(2)(R,R,R) is
cubic in R and contains terms of order 1/ε and 1/ε2. According to equations (17)
the surface field π|s renormalizes differently from the field π in the bulk. The
new factor Z1 serves to cancel the additional ultraviolet divergences in Feynman
diagrams arising from the image part of the Neumann propagator Ĝ(0)

q (z, z′) for
z′ → 0. The renormalized theory is not unique and depends on the scale µ. Using
this fact we will derive the functional renormalization group equation.

We now consider how the scaling behavior can be extracted from the renormal-
ized theory. Using the independence of the bare theory on the momentum scale
µ one can derive the flow equations for the renormalized correlation functions dif-
ferentiating both sides of equation (16) with respect to µ at fixed bare quantities.
One finds that the renormalized correlation functions satisfy the following FRG
equation [

µ∂µ + (d− 2− ζT )T∂T − ζhh∂h − ζh1h1∂h1 +
L

2
ζπ +

+
K

2
(ζπ + ζ1)−

∫
dφ β[R(φ)]

δ

δR(φ)

]
G(L,K) = 0, (20)

where the integral in the last line is taken over a period, i.e., (0, π) for RA and
(0, 2π) for RF models and we have introduced the scaling functions:

ζi = µ∂µ lnZi|0 , (i = T, π, 1), (21)

ζh = 2 + ζT − ζπ/2, ζh1 = 1 + ζT − (ζπ + ζ1)/2, (22)

β[R] = − µ∂µR(φ)|0 . (23)
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Here the zero indicates that the derivatives are taken at fixed bare quantities. Flow
equations similar to equation (20) hold also for the correlation functions in which
some or all the fields πa(r) are replaced by σa(r) and for other observables, e.g.,
the correlation length and the magnetization.

The long-distance physics can be obtained from the solution of the FRG equa-
tion (20) in the limit of µ → 0. The renormalized disorder correlator and the
temperature flow according to

−µ∂µR(φ) = β[R], (24)

−µ∂µ lnT = 2− d+ ζT . (25)

The scaling behavior is controlled by a zero temperature FP β[R∗] = 0 with R∗

of order ε and T ∗ = 0. Indeed, according to equation (25), the temperature is
irrelevant, i.e. it flows to 0 in the limit µ → 0 for d > 2 and for sufficiently small
ζT = O(R). Although one expects that ζT is small in the vicinity of the FP, one
has to take caution whether the zero temperature FP survives in three dimensions
where ζT ∼ ε is negative [13]. The stability of the FP can be checked by computing
the eigenvalues of the disorder flow equation (24) linearized about the FP solution:
R(φ) = R∗(φ) +

∑
i tiΨi(φ). Since one expects that for d > 4 (ε > 0) the FP R∗(φ)

describes the paramagnetic-ferromagnetic transition it has to be unstable in a
single direction Ψ1(φ) with eigenvalue λ1 > 0: β[R∗+t1Ψ1] = λ1t1Ψ1+O(t21). In the
vicinity of the zero temperature FP that controls the paramagnetic-ferromagnetic
transition, the FRG equation for the correlation length ξ can be written as[

µ∂µ − λ1t1
∂

∂t1

]
ξ(µ, t1) = 0. (26)

Dimensional analysis implies that ξ(µ, t1) = µ−1ξ̄(t1). This reduces equation (26)
to an ordinary differential equation (ODE) whose solution is ξ ∼ µ−1t

−1/λ1

1 . The
latter describes divergence of the correlation length on the critical line at zero
temperature when the strength of disorder approaches the critical value. Assuming
that along the transition line at finite temperature t1 ∼ T − Tc we find that the
positive eigenvalue λ1 gives the critical exponent of the correlation length ν = 1/λ1.
For d < 4 (ε < 0) the FP becomes stable and describes a QLRO phase. The
fluctuations exhibit power-law correlations in the whole QLRO phase so that the
correlation length ξ is always infinite down to the lower critical dimension of the
QLRO - paramagnetic transition.

Let us consider the solution of equation (20) for the connected two-point corre-
lation functions. The dangerous irrelevance of the temperature manifests itself in
the fact that the connected (bulk or surface) two point functions are proportional
to T in the low temperature limit. Thus, setting h = h1 = 0 and R = R∗ we can
rewrite equation (20) as[

µ∂µ +
1

2
(L+K)ζ∗π +

K

2
ζ∗1 + θ

]
G(L,K)

con = 0, (27)
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where the asterisk denotes that the function is computed at the FP. In equation (27)
we have defined the exponent

θ = d− 2− ζ∗T , (28)

which describes the flow of the temperature (25) in the vicinity of the FP and
has been introduced ad hoc in the modified hyperscaling relation (6). Using the
method of characteristics and dimensional analysis one can write the solution of
equation (27) in the form

G(L,K)
con (rb;R∗) = b−( 1

2
(L+K)ζ∗π+Kζ∗1/2+θ)fc(r;R

∗). (29)

Considering the connected two point functions (29) with (L = 2, K = 0),
(L = 1, K = 1), and (L = 0, K = 2) we derive the critical exponents:

η = ζ∗π − ζ∗T , , η⊥ = ζ∗π + ζ∗1/2− ζ∗T , η‖ = ζ∗π + ζ∗1 − ζ∗T . (30)

We next turn to the disconnected two-point correlation functions. At variance
with the connected correlation functions they are not proportional to the tempera-
ture. Thus, at h = h1 = T = 0 they satisfy the same equation (27) but without the
term θ in large square brackets. The solution of the latter FRG equation is given
by

G
(L,K)
dis (rb;R∗) = b−( 1

2
(L+K)ζ∗π+Kζ∗1/2)fd(r;R

∗). (31)

Repeating the analysis we did for the connected functions, we arrive at

η̄ = 4− d+ ζ∗π = 2 + η − θ, η̄⊥ = 4− d+ ζ∗π + ζ∗1/2 = 2 + η⊥ − θ, (32)

η̄‖ = 4− d+ ζ∗π + ζ∗1 = 2 + η‖ − θ. (33)

Note that the exponents (30) and (32)–(33) are related by

2η⊥ = η + η‖, 2η̄⊥ = η̄ + η̄‖. (34)

Finally we study the profile of the spontaneous magnetization below and at
the paramagnetic-ferromagnetic transition for d > dlc. The magnetization as a
function of the distance to the surface z, the reduced temperature t1, and the bulk
and surface magnetic fields h and h1 satisfies the following flow equation[

µ∂µ − ζ∗hh∂h − ζ∗h1
h1∂h1 +

1

2
ζ∗π +

j

2
ζ∗1 − λ1t1

∂

∂t1

]
σ(z, t1, h, h1) = 0. (35)

Here j = 0 and z > 0 corresponds to the bulk magnetization σ while j = 1 and
z = 0 gives the surface magnetization σ1. The solution of equation (35) can be
written as

σ(z, t1, h, h1) = b−( 1
2
ζ∗π+ j

2
ζ∗1 ) σ(zb−1, t1b

λ1 , hbζ
∗
h , h1b

ζ∗h1 ). (36)
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We first consider the profile for h = h1 = 0. The solution (36) interpolates
between the surface magnetization σ1(t1) ∼ t

(ζ∗π+ζ∗1 )/(2λ1)
1 at z ≈ 0 and the bulk

magnetization σ(t1, z) ∼ t
ζ∗π/(2λ1)
1 for z � ξ. Reexpressing the latter in terms

of ν,η̄, and η̄‖ we obtain that the bulk and the surface magnetization exponents
defined in equation (7) are given by

β =
1

2
ν(d− 4 + η̄), β1 =

1

2
ν(d− 4 + η̄‖). (37)

At the critical point t1 = 0 and finite external fields we find that σ(h) ∼ hζ
∗
π/(2ζ

∗
h) in

the bulk and σ1(h) ∼ h(ζ∗π+ζ∗1 )/(2ζ∗h) or σ1(h1) ∼ h
(ζ∗π+ζ∗1 )/(2ζ∗h1

)

1 at the surface. Thus,
the exponents δ, δ1, and δ11 defined in equations (8) satisfy the following scaling
relations:

δ − 1

2− η
=
ν

β
,

δ1 − β/β1

2− η
=

ν

β1

,
δ11 − 1

1− η‖
=

ν

β1

. (38)

4. Surface exponents to one-loop order

We now renormalize the both semi-infinite RF and RA models to one-loop order
and explicitly calculate the surface critical exponents to first order in ε = d − 4.
The factors Zπ, ZT and ZR[R] defined in equations (17)–(19) are the same that
appear in the case of the infinite systems. They have been calculated in several
works up to two-loop order [13,15,22,31]. To one-loop order they read

Zπ = 1− (N − 1)
R′′(0)

ε
+O(R2), ZT = 1− (N − 2)

R′′(0)

ε
+O(R2), (39)

εδ(1)(R,R) =
1

2
R′′(φ)2 −R′′(0)R′′(φ)− (N − 2)

{
R′′(0)[2R(φ) +

+R′(φ) cotφ]− 1

2 sin2 φ

[
R′(φ)

]2}
. (40)

The new factor Z1 that eliminates the poles resulting from the presence of the
surface can be determined from the renormalization of the two point function
G̊(1,1)(p, z; h̊, T̊ , R̊) which reads to one-loop order

G̊(1,1)(p, z; h̊, T̊ , R̊) = T̊
e−p̄z

p̄

{
1− Kd

4ε
R̊′′(0) ×

×

[
(N − 3)

(
h̊

p̄2
+
zh̊

p̄

)
+ 2(N + 1)

]
+O(R̊2)

}
, (41)

where p̄ = (p2 + h̊2)1/2. The factor Z1 can be found from the renormalization
condition

Z−1
π Z

−1/2
1 G̊(1,1)(p, z; h̊, T̊ , R̊) = finite for ε→ 0, (42)
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where the bare h̊, T̊ , R̊ are replaced by the renormalized h, T and R according to
equations (17)-(18). We obtain

Z1 = 1− (N − 1)
R′′(0)

ε
+O(R2). (43)

Thus, to one loop order we have Z1 = Zπ + O(R2). Using equations (21)-(23) we
calculate the scaling functions

ζT = −(N − 2)R′′(0) +O(R2), ζπ = ζ1 = −(N − 1)R′′(0) +O(R2), (44)

and the beta function

β[R] = −εR(φ) +
1

2
R′′(φ)2 −R′′(0)R′′(φ)− (N − 2)×

×
{
R′′(0)[2R(φ) +R′(φ) cotφ]− 1

2 sin2 φ

[
R′(φ)

]2}
+O(R2) (45)

to one-loop order. The solution of the FP equation β[R∗] = 0 with the beta
function (45) has been analyzed for different values of N and different sign of ε
in [13, 22, 31]. We first assume for granted that the flow has a FP R∗(φ) which
is a π-periodic function for the RA model and a 2π-periodic function for the RF
model. Then, the surface critical exponents can be computed to one loop using
equations (30) and (32)-(33). They give

η = −R∗′′(0), η̄ = −ε− (N − 1)R∗′′(0), (46)

η⊥ = −N + 1

2
R∗′′(0), η̄⊥ = −ε− 3

2
(N − 1)R∗′′(0), (47)

η‖ = −NR∗′′(0), η̄‖ = −ε− 2(N − 1)R∗′′(0). (48)

The other surface exponents are related to the exponents (46)-(48) by the scaling
relations (37) and (38).

4.1. Paramagnetic-ferromagnetic transition for d > 4 (ε > 0)

The RF model is described by R(φ) which is a 2π-periodic function. Numerical
solution of the FP equation shows that for d > 4 a 2π-periodic solution exists
only for N > Nc = 2.834 74. It has R∗′′(0) < 0 and it disappears when N →
N+
c . This cuspy FP is once unstable with the positive eigenvalue λ1 = ε. Thus,

the correlation length exponent ν = 1/ε + (ε0) coincides with the DR prediction
to one-loop order. Remarkably, the non-zero R∗′′′(0+) vanishes for N > N∗ =
18 + O(ε). The non-analyticity becomes weaker as N increases and starts with
R∗(2p(N)+1)(0+) 6= 0 where p ∼ N [22, 30, 31]. Weaker non-analyticity results in
restoring the DR critical exponents for N > N∗. The critical exponents ηi and
η̄i computed using equations (46)-(48) as functions of N are shown in the right
panel of Figure 1. With increasing N they monotonically decay approaching the
DR values at N = N∗ and satisfying the inequalities: η < η̄ < η⊥ < η̄⊥ < η‖ < η̄‖.
The bulk and surface magnetization exponents β and β1 calculated for different N
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Figure 1. Left panel: the critical exponents ηi and η̄i (divided by |ε|), which describe the
power-law decay of correlations in the QLRO phase of the RF model below the lower critical

dimension, as functions of N for N < Nc. Right panel: the critical exponents ηi and η̄i (divided
by ε), which describe the paramagnetic-ferromagnetic transition of the RF model above the lower
critical dimension, as functions of N for N > Nc. Inset: the bulk magnetization exponent β and

the surface magnetization exponent β1 as functions of N .

are shown in the inset of the right panel of Figure 1. To one-loop order they obey
the relation β1 = 2β. Up to now both magnetization exponents have been studied
only for the 3D RFIM where numerical simulations give β = 0.0017 ± 0.005 [25]
and β1 = 0.23± 0.03 [21]. Thus, the ratio β1/β for the RF O(N) systems in d > 4
is much smaller than for the 3D RFIM.

4.2. Quasi-long-range order for d < 4 (ε < 0)

Below the lower critical dimension the flow equation for the disorder correlator
has an attractive 2π-periodic FP solution. This cuspy FP appears only for 2 ≤
N < Nc where it controls the scaling behavior of spin fluctuations in the QLRO
phase. The corresponding exponents ηi and η̄i as functions of N are shown in the
left panel of Figure 1. In the case N = 2 the FP equation admits for an explicit
non-analytic φ0-periodic solution given by

R∗(φ) =
|ε|φ4

0

72

[
1

36
−
(
φ

φ0

)2(
1− φ

φ0

)2
]
. (49)

Using equations (46)-(48) one obtains

η =
φ2

0

36
|ε|, η̄ =

(
1 +

φ2
0

36

)
|ε|, η̄⊥ =

(
1 +

φ2
0

24

)
|ε|, (50)

η‖ =
φ2

0

18
|ε|, η̄‖ =

(
1 +

φ2
0

18

)
|ε|, η⊥ =

φ2
0

24
|ε| (51)

with φ0 = 2π for the RF system. The semi-infinite RF O(2) model can be mapped
onto a semi-infinite periodic disordered elastic system with a free surface. There
is one to one correspondence between the Bragg glass phase of the elastic system
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and the QLRO phase of the studied spin model. The power-law decay of the
spin correlations in the QLRO phase corresponds to the logarithmic growth of the
displacements in the disordered elastic system. Moreover, the exponents η, η⊥ and
η‖ provide the universal amplitudes of the logarithmic growth of the displacements
in the bulk, at the surface and along the surface, respectively. For a φ0-periodic
elastic system with a free surface these amplitudes are given by equations (50)-
(51). In particular, we find that the logarithmic growth of the displacements along
the surface is twice large as the logarithmic growth in the bulk. In the case when
only one point is on the surface the growth is enhanced by 50%. The presence
of a free surface can be considered as an extended defect of a special kind. The
influence of potential-like extended defects on the Bragg-glass has been recently
studied in [10,27].

5. Summary

In the present work we have studied the RF semi-infinite O(N) systems with
a free surface. Above the lower critical dimension dlc = 4 the systems undergo a
paramagnetic-ferromagnetic transition for N > Nc, while below dlc and for N <
Nc = 2.835 they exhibit a QLRO phase with zero magnetization and power-law
correlation of fluctuations. Using FRG we have derived the surface scaling behavior
at criticality as well as in the QLRO phase, and calculated the corresponding
surface exponents to lowest order in ε = d−4. We have found that the dimensional
reduction prediction for the surface scaling is broken similar to what happens
in the bulk. We have shown that the connected and disconnected correlation
functions scale differently also at the surface and derived the scaling relations
between different surface exponents. The surface exponents obtained for the 3D
RF O(2) can be used to describe the growth of displacements near a free surface in
semi-infinite periodic elastic systems in disordered media. The methods developed
in this work can be also applied to the systems with random anisotropy disorder [8].
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