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Abstract. In this paper, we explain and explore the idea that knowledge is
similar to mass in physics: similarly to how mass curves space-time, knowl-
edge curves the corresponding knowledge space.
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1. Knowledge Geometry

How to detect that two objects are different? Let us start with the fol-
lowing sample situation. To observe wild parrots, an ornithologist sets up a feeder.
Every morning, a parrot appears, and every evening, a parrot appears. These two
parrots look similar. A natural question is: is the same parrot coming in the
mornings and in the evenings, or these are two different parrots?

Natural idea: observe properties. A natural way to answer the above ques-
tion is to observe various properties of these two parrots. For example, if the
morning parrot has a red spot, and the evening parrot does not, this means that
they are different birds. If the wing span of evening parrot is smaller than the
wing span of the morning parrot, they are different birds.

Without losing generality, we can consider binary properties. In gen-
eral, properties can be of binary (yes-no) type, e.g., “has a red spot”. We can
also consider numerical properties like the wing span. In the computer, whatever
information we have can be represented in terms of binary digits (bits), i.e., in
terms 0s and 1s:

� on the one hand, the property of having or not having a red spot is represented
by a single bit;

� on the other hand, the numerical value of the wingspan is represented by
several bits.
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Instead of considering all these different types of properties, let us simply consider
all the information as the sequence of bits. From this viewpoint, measuring the
wing span means determining the values of several binary properties:

� the first of these binary properties is the value of the 1st bit in the binary
expansion of the measured value,

� the second of these binary properties is the value of the 2nd bit in the binary
expansion of the measured value,

� etc.

Representing knowledge about each object. Let N be the total number of
binary properties. Let us denote these properties by P1, . . . , PN . For each object a
and for each property Pi, we have the following three possibilities:

� the first possibility is that we know that the property Pi holds for the object
a, i.e., that the value Pi(a) is “true”; in the computers, the value “true” is
usually represented by 1;

� the second possibility is that we know that the property Pi does not hold for
the object a, i.e., that the value Pi(a) is “false”; in the computers, the value
“false” is usually represented by 0;

� the third possibility is that we do not know whether the object a satisfies the
property Pi; let us denote this case by Pi(a) = ∗.

Gauging difference between the two objects. In the first approximation,
it is reasonable to gauge the difference between the two objects by the number
of properties in which these two objects differ. In other words, if the object a is
characterized by the values P1(a), . . . , PN(a), and the object b is characterized by

the values P1(b), . . . , PN(b), then we take D(a, b)
def
=

N∑
i=1

d(Pi(a), Pi(b)), where we

define:

� d(v, v′) = 1 if we know that the values v and v′ are different, i.e., when either
v = 0 and v′ = 1, or v = 1 and v′ = 0; and

� d(v, v′) = 0 for all other pairs v and v′.

Some properties may be more important, some less important. To take the
difference in importance into account, we can assign weights wi > 0 to different
properties Pi, so that differences in the more important properties will be added
with more weight. In other words, it makes sense to consider the following formula
for the distance between the two objects:

D(a, b) =
N∑
i=1

wi · d(Pi(a), Pi(b)). (1)
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Comment. The idea of a reasonable knowledge-based distance between objects
is not new; it has been described, e.g., in [8].

2. Both Mass and Knowledge Curve the Corresponding
Spaces: An Idea

Observation: additional knowledge increases distances. Let us analyze
what happens to thus defined knowledge-based distance between objects if we
gain additional knowledge. Gaining additional knowledge means that for some
properties and for some objects:

� where we previously did not know whether this property is satisfied or not
(i.e., we had the unknown value ∗),

� now we know that this property is satisfied or that it is not satisfied.

How does this change in knowledge affect the distance D(a, b), i.e., a weighted
sum of the distances d(Pi(a), Pi(b))?

If for some property Pi, we had d(Pi(a), Pi(b)) = 1, this means that one of the
values Pi(a) and Pi(b) was equal to 0 (“false”) and another to 1 (“true”). In other
words, if d(Pi(a), Pi(b)) = 1, this means that we already know both truth values
Pi(a) and Pi(b). For this property, the additional knowledge will not change these
truth values and thus, the distance d(Pi(a), Pi(b)) = 1 will remain unchanged. So:

� values d(Pi(a), Pi(b)) = 1 remain unchanged, while

� the values d(Pi(a), Pi(b)) = 0 may increase to 1: e.g., if some truth values
were unknown Pi(a) = Pi(b) = ∗, and we found out that the property Pi is
false for a and true for b.

In both cases, the value d(Pi(a), Pi(b)) either remains the same or increases – and,
as a result, the distance D(a, b) between the two objects either remains the same
(if we did not learn any new information about their difference) or increases. In
short, in general, additional knowledge increases distance.

Conclusion: shortest paths change. In the vicinity of the object c for which
we gained the new knowledge, distance increases. As a result, if originally, the
shortest path between some objects a and b passed through c (or near c), its length
increases – and an alternative path which does not pass near c becomes now the
shortest.

Example. The changing of the shortest path can be illustrated on the example
of traffic. Let us measure the distance d(a, b) between the two points by the time
that it takes to travel between the locations a and b. In the absence of heavy
traffic (e.g., at night), the shortest path, e.g., between a location to the South of
downtown and a location to the North of it goes through downtown.



34 Francisco Zapata and Vladik Kreinovich. Knowledge Geometry. . .

However, during the rush hours, the traffic in downtown is usually congested.
As a result, the path through downtown becomes much longer. In this case, a
different path will be the shortest: the one which goes around downtown.

This is similar to curving of space-time. This phenomenon is similar to
the geometric interpretation of gravity in General Relativity; see, e.g., [4, 6]. In
the absence of masses, a body follows the straight line – which happens to be the
shortest path between the initial position a and the final position b. In the presence
of a heavy mass (e.g., the Earth or the Sun), the bodies start falling on this mass.

a b

b′

i

Shortest paths are a specific example of geodesics, i.e., paths on which the
length is stationary (e.g., the smallest or the largest). In General Relativity,
particles follow the geodesics in space-time. Because of the curving of space-time
(largely time), spatial projections of geodesics are not straight lines – i.e., the
actual path of a body in a curved space is different from the shortest path as
measured by the spatial distance.

3. Both Mass and Knowledge Curve the Corresponding
Spaces: Towards a Quantitative Description

Towards a quantitative description. In the ideal case, we know the exact
values vi(a) of all the quantities describing an object a. In such an ideal situation,
it is easy to check whether two objects a and b are identical or not:

� if for all quantities, we get vi(a) = vi(b), then the objects a and b are indis-
tinguishable – i.e., in effect, a and b are the same object;

� if for some quantity i, we have vi(a) 6= vi(b), this means that the objects a
and b are different from each other.

In practice, the values come from measurements, and measurements are never
100% exact; there is always a measurement error due to which the measured value
ṽi(a) is, in general, somewhat different from the actual (unknown) value vi(a) of
this quantity; see, e.g., [7]. In many cases, we know the probability distribution of

the measurement error ∆vi(a)
def
= ṽi(a)−vi(a). Often, this distribution is Gaussian;

this is in line with the fact that usually, many different phenomena contribute to the
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measurement error, and, according to the Central Limit Theorem, the distribution
of the sum of a large number of small independent random variables is close to
Gaussian; see, e.g., [10]. It is usually assumed that the bias (mean error) has
been compensated, so the mean value of the measurement error is 0.

Because of the measurement errors, even if a and b are the same object, i.e.,
even if the actual values of the corresponding quantities coincide vi(a) = vi(b), the
measured values ṽi(a) = vi(a) + ∆vi(a) and ṽi(b) = vi(b) + ∆i(b) will be, in general,
slightly different. Vice versa, when the objects differ and vi(a) 6= vi(b) for some i,
it is possible that we will have ṽi(a) = vi(a) + ∆vi(a) = vi(b) + ∆i(b) = ṽi(b), i.e.,
the observed values will be the same.

So, based on the measurement results, we can never know for sure whether the
two objects a and b are identical or not, we can only make this conclusion with
a certain probability. Specifically, based on the known probability distribution of
the measurement error, we can estimate what is the probability that the observed
values ṽi(a) and ṽi(b) come from the same object.

� When this probability is high, we conclude that the objects are most probably
the same.

� When this probability is low, we conclude that the objects are different.

It is therefore reasonable to define the distance between the objects a and b in
such a way that the larger the distance, the smaller the corresponding probability.
Namely:

� we assume that we observe the exact values of the corresponding quantities
vi(a) and vi(b), and

� we compute the probability that the difference between these values can be
explained by the measurement errors.

Gaussian distributions correspond to Riemannian geometry, more gen-
eral distributions to more general (Finsler) geometry. Let us assume that
we observe the values vi(a) 6= vi(b). Under the hypothesis that the differ-
ence between these values can be explained by the measurement error, i.e., that
vi(a) = vi + ∆vi(a) and vi(b) = vi + ∆vi(b) for some values vi, we conclude that

∆vi(a)−∆vi(b) = di
def
= vi(a)− vi(b).

Measurement errors ∆vi(a) and ∆vi(b) corresponding to different measure-
ments are usually independent. So, when the measurement errors ∆hj are normally
distributed (with 0 mean), the difference di = ∆vi(a)−∆vi(b) is also normally dis-
tributed (and also with 0 mean). The corresponding probability density function
has the form const · exp(−ci · (di)2) for an appropriate value ci.

Since we assumed that measurement errors corresponding to different measure-
ments are independent, we conclude that the overall probability that the objects a
and b are different is equal to the product of the corresponding probabilities, i.e.,

to the value
∏
i

const · exp(−ci · (di)2) = const · (−s), where s def
=
∑
i

ci · (di)2.



36 Francisco Zapata and Vladik Kreinovich. Knowledge Geometry. . .

So, the probability is uniquely determined by the weighted sum s. In general,
each object a can be characterized by the values of the corresponding parameters
a1, . . . , an, and the quantities vi(a) smoothly depend on these parameters. As a
result, for close objects a = (a1, . . . , an) and

b = a+ ∆a = (a1 + ∆a1, . . . , an + ∆an),

we get

di = vi(a+ ∆a)− vi(a) =
n∑
j=1

Dij ·∆aj + o(∆a),

where Dij
def
=

∂vi
∂aj

, and thus,

s =
∑
i

ci · (di)2 =
∑
i

ci ·

(
n∑
j=1

Dij ·∆aj

)2

+ o(∆a).

Therefore, s is a quadratic function of ∆aj, s =
n∑
j=1

n∑
k=1

gjk ·∆aj ·∆ak for some gjk.

Thus, the value s is naturally related to the Riemannian distance

d(a, a+ ∆a) =

√√√√ n∑
j=1

n∑
k=1

gjk ·∆aj ·∆ak.

For more general probability distributions, we get a more general formula for
the corresponding metric – i.e., in the smooth case, a general Finsler space [1–3,
5,9] instead of a specific Riemannian space.
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