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Abstract. The famous Alexandrov-Zeeman theorem proves that causality im-
plies Lorentz group. The physical meaning of this result is that once we
observe which event can causally affect which other events, then, using only
this information, we can reconstruct the linear structure of the Minkowski
space-time. The original Alexandrov-Zeeman theorem is based on the causal-
ity relation between events represented by points in space-time. Knowing such
a point means that we know the exact moment of time and the exact location
of the corresponding event — and that this event actually occurred at a single
moment of time and at a single spatial location. In practice, events take some
time and occupy some spatial area. Besides, even if we have a point-wise
event, we would not be able to know the exact moment of time and exact
spatial location — since the only way to determine the moment of time and
the spatial location is by measurement, and measurements are never absolutely
accurate. To come up with a more realistic description of observable causality
relation between events, we need to consider events which are not pointwise,
but rather represented by bounded regions A in the Minkowski space-time.
When we have two events represented by regions A and B, the fact that we
have observed that the first event can causally influence the second one means
that a ≤ b for some points a ∈ A and b ∈ B. In this paper, we show that
even if we only know the causal relation between such regions, we can still
reconstruct the linear structure on the Minkowski space-time. Thus, already
observable causality implies Lorentz group.

Keywords: Minkowski space-time, causality, Lorentz transformations, ob-
servable causality, Alexandrov-Zeeman theorem.

1. Formulation of the Problem

Causality implies Lorentz group: known result. In the Minkowski space-time
of special relativity, a space-time event is described by a pair (t, x), where t ∈ IR is
a moment of time and x ∈ IRd is a spatial location (and d is the dimension of proper
space). In this space, the causality relation 4 is described as follows: an event
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(t, x) can influence an event (t′, x′) if and only if a signal starting at location x at
moment t and traveling at a speed not exceeding the speed of light c, can reach the
location x′ at a moment t′. The speed which is needed to cover the distance d(x, x′)

between the two spatial locations in time t′ − t is equal to
d(x, x′)

t′ − t
; therefore, the

causality condition takes the form
d(x, x′)

t′ − t
≤ c, or, equivalently,

(t, x) 4 (t′, x′)⇔ c · (t′ − t) ≥ d(x, x′).

It is easy to check that this causality relation is preserved under several coor-
dinate transformations:

� if we shift time t→ t+ t0; in physical terms, this transformation corresponds
to changing the starting point for measuring time;

� if we shift coordinates x → x + x0; in physical terms, this transformation
corresponds to changing the starting location for measuring coordinates;

� if we perform a rotation in the proper space (e.g., in the physical 3-D space)
x → Tx; in physical terms, this transformation corresponds to changing the
orientation of the coordinate axes;

� if we perform a Lorentz transformation; in physical terms, this transformation
corresponds to switching to an observer who moves in relation to the original
observer;

� if we perform a scaling t→ λ · t and x→ λ · x; in physical terms, this trans-
formation corresponds to a simultaneous changing the units for measuring
time and distance — in such a way that the numerical values of velocities do
not change.

Interestingly, the inverse is also true: it has been proven that every 1-1 trans-
formation of the Minkowski space-time onto itself which preserves the causality
relation is a composition of the above transformations. Such compositions form a
group known as the Lorentz group.

This result was first proven by A. D. Alexandrov in 1949 [1, 2] and became
widely known after a somewhat stronger result was proven by E. C. Zeeman in
1964 [3]; the whole result is therefore often called an Alexandrov-Zeeman theorem.
These results hold not only for the physical case of the 3-D proper space d = 3,
they hold for all spatial dimensions d ≥ 2.

The deep meaning of this theorem is that all we need is the causality notion,
even the linear structure — i.e., the linearity of the corresponding transformations
— can be determined based only on causality.

Problem. From the mathematical viewpoint, the formulation of the Alexandrov-
Zeeman theorem deals with point events, i.e., with pairs (t, x) for which we know
exactly the moment of time t and the spatial location x. In practice, we can only
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measure the moment of time and the spatial location with some uncertainty. As
a result, we only know that the actual space-time event is located in some known
neighborhood region of the point

(
t̃, x̃
)

corresponding to the measurement results
t̃ and x̃. In other words, from the observation viewpoint, we only observe causality
relation between such regions.

What would happen is instead of a transformation which preserves causality
relation between points — as in the original Alexandrov-Zeeman theorem — we
consider transformations which preserve causality relation between regions?

What we do in this paper. In this paper, we prove that even if we replace the-
oretical points with observable regions, the result will remain the same: causality
still implies Lorentz group.

2. Definitions and the Main Result

Definition 1. By a region, we mean a closure of a bounded open set in the
Minkowski space.

Comment.

� Boundedness comes from the fact that there should be an a priori upper
bound on the measurement error: if there is no such upper bound, this is not
a measurement, this is a wild guess.

� Openness comes from the fact that due to uncertainty, all the events in a
certain neighborhood of the measured space-time location x̃ are also possible.

� Finally, closeness comes from the fact that if xn → x and all locations xn are
consistent with the given measurement, then, no matter how accurately we
describe the location x, it is, within this accuracy, indistinguishable from a
possible location xn. Thus, from all practical purposes, the limit location x is
also possible.

Definition 2. We say that a set A causally precedes a set B — and denote it
A 4 B – if there exist events a ∈ A and b ∈ B for which a 4 b.

Comment. All we observe is that one event — about which we know that this event
is somewhere in the region A – causally affects another event b — about which
all we know is that this event is somewhere in the region B. Thus, the above
definition is an adequate description of observable causality.

It should be noticed that, in contrast to the causality relation between points —
which is a (partial) order — causality relation between regions is not an order: for
example, if two regions A 6= B intersect, we have A 4 B and B 4 A but A 6= B.

Definition 3. We say that a continuous 1-1 mapping f of the Minkowski space
onto itself preserves observable causality if for every two regions A and B, A 4 B
if and only if f(A) 4 f(B).
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Theorem. Every mapping which preserves observable causality belongs to the
Lorentz group.

Comment. In other words, observable causality implies Lorentz group.

Proof. To prove our result, we will prove that every mapping that preserves
observable causality also preserves the causality relation between the point events
(t, x); then, our result will follow from the original Alexandrov-Zeeman theorem.

For this proof, we will need several auxiliary definitions and lemmas.

Definition 4. A set S is called 4-convex if it contains, with every two points
a 4 b, all the points c for which a 4 c 4 b.

One can easily check that the intersection of any family of 4-convex sets is also
4-convex. Thus, we can formulate the following definition:

Definition 5. By a 4-convex hull of the closed set S, we mean the smallest
4-convex set which contains S — i.e., the intersection of all 4-convex sets
containing S. This hull will be denoted by H(S).

Lemma 1. For each bounded closed set S, its 4-convex hull has the form

H(S) = {c : a 4 c 4 b for some a, b ∈ S}.

Proof. We need to prove that H(S) = H0(S)(S), where we denoted

H0(S)(S)
def
= {c : a 4 c 4 b for some a, b ∈ S}.

1◦. Let us first prove that H0(S) ⊆ H(S), i.e., that every element c ∈ H0(S) also
belongs to H(S).

Indeed, if c ∈ H0(S), this means that a 4 c 4 b for some a, b ∈ S. In this
case, both a and b also belong to any 4-convex set S ′ containing S. So, c belongs
to every 4-convex set containing S, and thus, belongs to their intersection H(S).
The statement is proven.

2◦. To complete the proof, it is sufficient to show that the set H0(S) is itself
4-convex.

Since H0(S) ⊆ H(S) and H(S) is the smallest 4-convex containing S, this will
imply that H0(S) cannot be a proper subset of H(S) and thus, that H0(S) = H(S).

We want to prove that the set H0(S) is 4-convex, i.e., that if c, c′ ∈ H0(S) and
c 4 d 4 c′, then d ∈ H0(S).

Indeed, the fact that c and c′ are elements of H0(S) means that a 4 c 4 b and
a′ 4 c′ 4 b′ for some a, b, a′, b′ ∈ S. Due to transitivity of the relation 4, the
inequalities

a 4 c 4 d 4 c′ 4 b′

imply that a 4 d 4 b′, for a, b′ ∈ S. By definition of the set H0(S), this means that
d ∈ H0(S).
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The statement is proven, and so is the lemma.

Lemma 2. For each bounded closed set S, its 4-convex hull H(S) is also closed.

Proof. Due to Lemma 1, it is sufficient to prove that the set H0(S) is closed, i.e.,
that if cn ∈ H0(S) and cn → c, then c ∈ H0(S).

Indeed, by definition of the set H0(S), the fact that cn ∈ H(S) means that
an 4 cn 4 bn for some an ∈ A and bn ∈ B. Since the sequence an is contained in a
bounded closed subset of a finite-dimensional Euclidean space – i.e., in a compact
set — it has a subsequence which converges to some element a ∈ A. From this
subsequence, we can extrat a sub-subsequence for which bn also converges to some
element b ∈ A. For this sub-subsequence, we have an 4 cn 4 bn, an → a, bn → b,
and cn → c. The relation 4 is closed. Thus, in the limit, we get a 4 c 4 b for
a, b ∈ A. By definition of the set H0(S), this means that c ∈ H0(S).

The lemma is proven.

The usefulness of the hulls comes from the following lemma:

Lemmas 3. For every two sets A and B, A 4 B ⇔ H(A) 4 H(B).

Proof.

1◦. Let us first prove that A 4 B implies H(A) 4 H(B).
Indeed, by definition, A 4 B means the existence of points a ∈ A and b ∈ B

for which a 4 B. Since A ⊆ H(A) and B ⊆ H(B), we also have a ∈ H(A) and
b ∈ H(B); thus, we have H(A) 4 H(B).

2◦. Vice versa, let us prove that H(A) 4 H(B) implies A 4 B.
Indeed, by definition, H(A) 4 H(B) means that there exist values c ∈ H(A)

and d ∈ H(B) for which c 4 d. By Lemma 1, from c ∈ H(A) and d ∈ H(B), we
conclude that a 4 c 4 a′ for some a, a′ ∈ A and b 4 d 4 b′ for some b, b′ ∈ B. By
transitivity, a 4 c 4 d 4 b′ implies that a 4 b′, where a ∈ A and b′ ∈ B. Thus, by
definition of causal relation between sets, we indeed have A 4 B.

The lemma is proven.

Notation 1. We denote C−(b)
def
= {c : c 4 b} and C+(b)

def
= {c : b 4 c}.

Lemma 4. For every two regions A and B,

H(A) ⊆ H(B)⇔ ∀C ((A 4 C ⇒ B 4 C) & (C 4 A⇒ C 4 B)),

where the quantifier goes over all regions C.

Proof.

1◦. Let us first assume that H(A) ⊆ H(B). Then, from A 4 C, we conclude that
a 4 c for some a ∈ A and c ∈ C. Since A ⊆ H(A) ⊆ H(B) and C ⊆ H(C),
we conclude that a 4 c for a ∈ H(B) and c ∈ H(C), hence H(B) 4 H(C). By
Lemma 3, this implies that B 4 C.

Similarly, C 4 A implies that C 4 B.

2◦. Let us now show that if H(A) is not a subset of H(B), then:
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� either there exists a region C for which A 4 C but B 64 C,

� or there exists a region C for which C 4 A but C 64 B.

Indeed, H(A) 6⊆ H(B) means that A 6⊆ H(B) – since if we had A ⊆ H(B), then
for the hull H(A), we would have H(A) ⊆ H(H(B)) = H(B). Thus, there exists
an element a ∈ A for which a 6∈ H(B).

By Lemma 1, the hull H(B) consists of all the elements x for which b 4 x 4 b′

for some b, b′ ∈ B. Thus, the fact that a 6∈ H(B) means that:

� either a 64 b for all b ∈ B

� or b 64 a for all b ∈ B.

2.1◦. Let us first consider the case when a 64 b for all b ∈ B.
Since the set B is compact, the set

{c : c 4 b for some b} =
⋃
b∈B

C−(b)

is closed. Thus, the complement C to this set is open. Every point a from the
Minkowski space has the form a = (t, x). The fact that the point a = (t, x)
belongs to this complement means that for a sufficiently small ε > 0, the points

a
def
= (t− ε, x) and a def

= (t+ ε, x) also belong to the complement C.

For the region C
def
= {c : a 4 c 4 a}, we clearly have C 4 A, since a 4 a for

a ∈ A and a ∈ C. However, C 4 B is impossible, because this would imply that
x 4 b for some b ∈ B, and we selected the set C in such a way that this set C
does not contain such points.

2.2◦. In the second case, when b 64 a for all b ∈ B, we can similarly find a region
C for which A 4 C but not B 4 C.

The lemma is proven.

Corollary. If f is a continuous 1-1 mapping of the Minkowski space onto itself
which preserves observable causality, then

H(A) ⊆ H(B)⇔ H(f(A)) ⊆ H(f(B)).

Proof. Indeed, as Lemma 4 shows, the relation H(A) ⊆ H(B) can be described in
terms of the observable causality relation. Thus, any mapping that preserves the
observable causality relation also preserves the relation H(A) ⊆ H(B).

Definition 6. We say that a sequence of regions {An} is 4-embedded if H(Ai) ⊇
H(Ai+1) for all i.

Lemma 5. Let {An} be a 4-embedded sequence of regions, and let B be a
region. Then:

∀n(B 4 An)⇔ H(B)
⋂(⋃{

C−(c) : c ∈
⋂
n

H(An)

})
6= ∅.
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Proof.

1◦. Let us first assume that B 4 An for all n. Let us then prove that the set B

has a common point with the union
⋃{

C−(c) : c ∈
⋂
n

H(An)

}
.

The fact that B 4 An means that bn 4 an for some bn ∈ B and an ∈ An ⊆
H(An). Since all the elements of the sequence bn belong to the compact set B,
this sequence has a convergent subsequence.

Each element of the sequence an belongs to the set H(An), and thus, to the
compact set H(A1). Thus, we can extract a sub-subsequence for which the se-
quence an also converges. For this sub-subsequence, we have bn → b and an → a.
From bn 4 an, we conclude that b 4 a.

Since the sequence of regions is 4-embedded, for each n, all the elements an,
an+1, . . . belong to the closed set H(An). Thus, their limit a also belongs to this
set. This is true for every n, so a belongs to the intersection

⋂
n

H(An) of all these

sets. Since b 4 a, we have b ∈ C−(a). Thus, the point b ∈ B belongs to the union⋃{
C−(c) : c ∈

⋂
n

H(An)

}
. The statement is proven.

2◦. Let us now assume that B has a common point with the union⋃{
C−(c) : c ∈

⋂
n

H(An)

}
, in other words, that there exists an element b ∈ B

for which, for some c ∈
⋂
n

H(An), we have b ∈ C−(c) (i.e., b 4 c). Let us prove

that in this case, B 4 An for all n.
Indeed, for each n, since c ∈

⋂
n

H(An), we have c ∈ H(An). Since we have b 4 c

for two elements b ∈ B and c ∈ H(An), we can thus conclude that B 4 H(An).
Similarly to Lemma 3, we can then conclude that B 4 An.

The statement is proven, and so is the lemma.

Lemma 6. Let {An} be a 4-embedded sequence of regions, and let B be a
region. Then:

∀n(An 4 B)⇔ H(B)
⋂(⋃{

C+(c) : c ∈
⋂
n

H(An)

})
6= ∅.

Proof is similar to the proof of Lemma 5.

Notation 2. For each 4-embedded sequence of regions A = {An}, by B(A), we
will denote the class of all the regions B for which, for every n, we have B 4 An
and An 4 B.

Lemma 7. For each 4-embedded sequence of regions A = {An}, the following
two conditions are equivalent to each other:

� the intersection
⋂
n

H(An) consists of a single point;
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� the class B(A) is minimal in the sense that no other 4-embedded sequence
of regions A′ has a set B(A′) which is a proper subclass of B(A).

Proof. Let us denote h
def
=
⋂
n

H(An). In these terms, by Lemmas 5 and 6, the

class B(A) consists of all the regions B for which the closure H(B) has common
elements with both unions

⋃
{C−(c) : c ∈ h} and

⋃
{C+(c) : c ∈ h}.

For a sequence A0 =
{
A

(0)
n

}
for which the intersection h0

def
=
⋂
n

H
(
A

(0)
n

)
consists of a single element s, the set B(A0) thus consists of all the regions B for
which the closure H(B) has common elements with both sets C−(s) and C+(s).

If for a sequence A, the intersection h has more than one element, this means
that it contains some elements s 6= s′. We can then easily form an 4-embedded
sequence of 4-convex regions A0 whose intersection is exactly {s}: e.g., if s =
(t, x), we can take, as An, all the elements which causally follow from (t− 2−n, x)
and which causally precede (t + 2−n, x). Clearly, if H(B) has common elements
with both sets C−(s) and C+(s), then it also has common elements with both
unions

⋃
{C−(c) : c ∈ h} and

⋃
{C+(c) : c ∈ h}. Thus, B(A0) ⊆ B(A).

To complete our proof, let us show that if the intersection
⋂
n

H(An) contains

an element s′ = (t′, x′) 6= s = (t, x), then B(A0) is a proper subset of B(A). In
other words, we will prove that the class B(A) contains a region B which is not
contained in B(A). To find this region B, let us consider, for each integer n, the
region

Bn
def
= {c : (t′ − 2−n, x′) 4 c 4 (t′ + 2−n, x′)}.

For each n, the region Bn contains the point s′ = (t′, x′) and thus, has a common
point s′ with both sets C−(s′) and C+(s′) which are part of the corresponding
unions. Thus, Bn ∈ B(A).

On the other hand, if we had Bn ⊆ B(A0) for all n, this would mean that each
Bn contains a common element b−n with the set C−(s) and a common element b+

n

with the set C+(s). Thus, for each n, we would have b−n 4 s and s 4 b+
n . Since b−n

and b+
n are elements of Bn, we have b−n → s′ and b+

n → s′. In the limit, we thus get
s′ 4 s and s 4 s′, thus s = s′, which contradicts to our assumption that s 6= s. This
contradiction shows that it is not possible to have Bn ⊆ B(A0) for all n. Thus, for
some n, we have Bn ⊆ B(A) but Bn 6⊆ B(A0) — and therefore, B(A0) is a proper
subset of B(A).

The lemma is proven.

Notation 3. According to Lemma 6, for each 4-embedded sequence of regions
A = {An} for which the class B(A) is minimal, the intersection

⋂
n

H(An) consists

of a single point. Let us denote this point by s(A).

Discussion. Due to Lemma 7, points in the Minkowski space can be described
in terms of the observable causality relation between regions — as 4-embedded
sequence of regions A for which the corresponding class B(A) is minimal. Thus,
the mapping that preserves observable causality also preserves the corresponding
points s(A).
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To complete the proof of our main result, we need to show that the causality
relation between these points can also be described in terms of observable causality.
Thus, every mapping which preserves observable causality preserves the original
causality — and therefore, due to the original Alexandrov-Zeeman theorem, be-
longs to the Lorentz group. This is proven in the following two lemmas.

Lemma 8. For each 4-embedded sequence of regions A for which the class
B(A) is minimal, this class B(A) consists of all the regions B for which the
4-convex hull H(B) contains the point s(A):

B(A) = {B : s(A) ∈ H(B)}.

Proof. If B ∈ B(A), then, by Lemmas 5 and 6, this means that for c def
= s(A), the

set H(B) contains a point b− ∈ C−(c) and a point b+ ∈ C+(c). Thus, b− 4 c 4 b+.
Since the set H(B) is 4-convex, we conclude that c ∈ H(B).

Vice versa, let B be a set for which c ∈ H(B). Then, clearly, H(B) has a
common element c with both C−(c) and C+(c), and thus, B ∈ B(A).

Lemma 9. Let A and A′ are 4-embedded sequence of regions for which the
classes B(A) and B(A′) are minimal, and let s(A) and s(A′) be the corresponding
points in the Minkowski space. Then, the following two conditions are equivalent
to each other:

� s(A) 4 s(A′);

� B 4 B′ for every two regions B ∈ B(A) and B′ ∈ B(A′).

Proof.

1◦. Let us first assume that c = s(A) 4 c′ = s(A′). Let B ∈ B(A) and B′ ∈ B(A′).
Let us then show that B 4 B′.

Indeed, by Lemma 8, the set B contains the point c, and the set B′ contains
the point c′. Thus, c 4 c′ implies B 4 B′.

2◦. Let us now assume that B 4 B′ for every two sets B ∈ B(A) and B′ ∈ B(A′).
Let us then prove that c = s(A) 4 c′ = s(A′).

Indeed, let c = (t, x) and c′ = (t′, x′). For every integer n, the us consider the
regions

Bn
def
= {z : (t− 2−n, x) 4 z 4 (t+ 2−n, x)}

and
B′n

def
= {z : (t′ − 2−n, x′) 4 z 4 (t′ + 2−n, x′)}

By Lemma 8, we have Bn ∈ B(A) and B′n ∈ B(A′). Thus, we have Bn 4 B′n. This
means that there exist points bn ∈ Bn and b′n ∈ Bn for which bn 4 b′n. In the limit
when n→∞, we have bn → c and b′n → c′, thus c 4 c′.

The statement is proven, and so is the lemma and our main result.
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Аннотация. Знаменитая теорема Александрова-Зимана доказывает, что причин-
ность влечёт группу Лоренца. Физический смысл этого результата в том, что,
если мы знаем, какое событие может причинно влиять на другие события, то,
используя только эту информацию, мы можем реконструировать линейную струк-
туру пространства-времени Минковского. Оригинальная теорема Александрова-
Зимана основана на причинной связи между событиями, представленных точками
пространства-времени. Знание такой точки означает, что мы знаем точный момент
времени и точное местоположение соответствующего события — и что это событие
на самом деле произошло мгновенно и в одной точке пространства. На практике
события происходят в течение некоторого времени и занимают некоторую про-
странственную область. Кроме того, даже если мы имеем дело с событием в
пространстве, мы не можем знать его точный момент времени и точные простран-
ственным координаты, так как определить эти данные можно лишь посредством
измерений, которые никогда не являются абсолютно точными. Чтобы прийти к
более реалистичному описанию наблюдаемой причинной связи между событиями,
мы должны рассмотреть неточечные события, которые представлены ограниченны-
ми областями A в пространстве-времени Минковского. Если даны два события,
представленные областями A и B, то из того наблюдаемого факта, что первое
событие может причинно влияет на второе, можно сделать вывод, что a ≤ b для
некоторых точек a ∈ A и b ∈ B. В этой статье мы показываем, что, зная лишь
причинную связь между такими областями, все ещё возможно реконструировать
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линейную структуру на пространстве-времени Минковского. Таким образом, даже
наблюдаемая причинность влечёт группу Лоренца.

Ключевые слова: Пространство-время Минковского, причинность, преобразова-

ние Лоренца, наблюдаемая причинность, теорема Александрова-Зимана.


