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COARSELY GEODESIC METRICS ON REDUCTIVE
GROUPS (AFTER H. ABELS AND G. A. MARGULIS)

G.A. Noskov

B crarbe uzyuarorcs cBoiicTBa byHKIUN JJIUHBI Ha TPYIIIAX.

We are going to study the length functions on a group G, that is the functions
g — |g| : G — R, satisfying the following axioms:

e Positivity: |1| = 0 and |g| > 0 for all nonidentical g € G
e Triangle inequality: |gh| < |g| + |h|, g,h € G;

e Symmetry: |g| = |¢7!], g€ .

Any length function gives rise to a left invariant metric d on GG as usual: d(g, h) et

= |g71h|. And conversely, any left invariant metric defines a length function.
There are plenty of left invariant Riemannian metrics on any connected real Lie
group (7, although all of them give rise to a Lipshitz equivalent distance functions.
On the other hand if € is a compact symmetric neighbourhood of identity 1 € G
then we can define a word length function on G by |g| = min{i € Z, | g € 2'}. One
can easily see that d is quasi-isometric to the metric induced by any left invariant
Riemannian metric on (G. Thus the problem of classification of metrics of above type
up to a quasi-isometry is trivial - any two of them are quasi-isometric. Both two
classes of metrics, introduced above, have a common feature — they are «coarsely
geodesic» (see below the definition).

Recently H. Abels and G. A. Margulis gave much more refined classification of
coarsely geodesic left invariant proper metrics on reductive Lie groups up to coarse
equivalence [1]. They have defined a class of so called normlike pseudometrics on a
reductive group, and have proved the following theorem.

Theorem 1. Let G be a reductive R-group and G' = G(R)°. Then any left invariant
coarsely geodesic proper metric is bounded distance away from a unique normlike
pseudometric on G.
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This theorem gives the picture of a metric «in a large scale» and favorably
compare to the following result of V . Berestovsky which is «local» in nature |[2]
(for example it does not apply to word metrics):

Theorem 2. Any interior left invariant metric on a Lie group is the Carnot-
Caratheodory-Finsler one.

We give an exposition of Abels & Margulis result, sacrificing some generality,
but not the ideas.

1. Coarse world

Definition 1. A parameterized curve (not necessarily continuous!)
a(t) : [0,tg] — X

in a metric space (X, d) is called a C-coarse geodesic, C' > 0 if d(a(s), a(t)) g |s —t]
for all s,t € [0,1]. (The symbol € means equality up to an error not exceeding C.)
The space (X,d) is called C-coarsely geodesic, if any two points z,y € X can be
connected by a C-coarse geodesic.

A map f: X — Y of metric spaces is (A, B)-uniform, A, B > 0 if

Va,r'e X dx2)<A=d(f(z),f(z) <B

and f is called uniform if V A > 0 there is B > 0, such that f is (A, B)-uniform. For
example, any C-coarse geodesic is (B, B + (')-uniform for any B > 0.

A map f: X — Y of metric spaces is proper if the preimage of a bounded set is
bounded.

We say that the metrics dy, dy on a space X are Hausdorff or coarsely equivalent
iff |dy — ds| is a bounded function on X x X.

2. Reflection groups

We recall notation and facts about finite groups generated by reflections and which
we use later on. Sufficient references for this are [3,4].

Let V be a Euclidean space, i.e. a finite dimensional vector space with an inner
product. The reflection in a hyperplane H is the linear transformation sy : V. — V
which is the identity on H and is multiplication by -1 on the (one-dimensional)
orthogonal complement H+. A finite reflection group is a finite group W of linear
transformations generated by reflections. We call the fixed-point subspace V5 = VW
the inessential part of V', and its orthogonal complement V; the essential part of V.
Let ‘H denote the set of all reflecting hyperplanes H with in sy € W. For a reflection
s € S, we denote its reflecting hyperplane by H?®. The connected components of the

complement of the union |J H in R"™ are called Weyl chambers, and the closure of
HEH

a Weyl chamber is called a closed Weyl chamber. Any closed Weyl chamber A™ is
a fundamental set for W in R", i.e. each W-orbit has precisely one point in AT,
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In particular we have a Coxeter projection ¢ : R" — AT. It implies that W acts
simply transitively on the set of Weyl chambers or, equivalently, any closed Weyl
chamber can be uniquely represented as wA™, w € W. The hyperplane L, defines
two closed halfspaces of R™ and those one, containing A", we denote by L. We fix
a W-invariant inner product ( ;) on R". For each reflection s there is a unique unit
vector ag, pointing to L} and orthogonal to L and we call this vector an s-root. In
terms of roots AT = {zx € R" | (z,a5) >0 Vs S}

Any Weyl chamber is a unique irreducible intersection of halfspaces and we call
the corresponding hyperplanes the walls of the chamber. The set Sy of all reflections
in the walls of A" generates W. The vectors {as | s € Sy} form a basis of V.
Therefore V;-N A7 is a simplicial cone of dimension |Sy|, and we have an orthogonal
decomposition AT = Vy+ (V1N AT). We also recall that the angle between any two
roots, corresponding to different walls of A™ is obtuse.

We call convex cone ATt spanned by {a; | s € Sp} the dual of AT. The linear
functional ¢ on V is called positive with respect to AT if it takes nonnegative values
on AT, Let W, = {w € W | wx = z} denote the stabilizer of a point x € R™ in
W. It is known that W, is generated by W, NSy for any =z € A™.

Lemma 1. (Supporting functionals) Let || - || be a W-invariant norm on V. For
any nonzero x € V one can find a linear functional £, on R™ such that

[l =1, Lu(z) = |l=],
and £, 1s positive with respect to any Weyl chamber containing x.

Proof. It follows from the Hahn-Banach theorem that there exists a linear func-
tional £, on R™ such that ||£,|| = 1 and £,(z) = ||z||. Averaging ¢, over the stabilizer
W, of z in W and using W-invariance of || - ||, we may assume £, to be invariant
under W,. Fix a Weyl chamber AT, containing z. It remains to prove that £, is
positive with respect to AT, that is £,(c,) > 0 for every s € Sy, then by invariance
lp(ag) = 0. If sz # x, then

lo(sz) < | Lalllsz]] = [lz]| = Lx(),

i. e. ly(x) — L.(sz) is positive. Moreover, x — sz is a positive multiple of o, and
therefore £, (x) — £, (sz) is a positive multiple of £, (), hence £, (ay) is positive and
thus £, is positive with respect to A™. Since £, is W,-invariant we conclude that
¢, is positive with respect to any wA*,w € W,. It is easy to see that any Weyl
chamber, containing z is of the form wA™ for some w € W,. [ |

3. Length functions on R" and stable norms

Let | - | be a length function on additive group R™. If a € R™ then by the triangle
inequality the sequence |mal|, m € N is subbadditive and therefore the following limit

def lim _|ma|

m—0o0

lall
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exists for every a € R™ and clearly |a| > ||a||. We call ||a]| a stable norm of a. It fol-
lows from definition that the stable norm is nonnegative, symmetric, homogeneous,
satisfies triangle inequality, but it might happen that the stable norm is not positive.

Definition 2. A length function |- | on R™ is proper, iff both |- | and any Euclidean
metric on R™ have the same system of bounded subsets.

The definition is stronger that that of given in [1|, but this does not affect the
results we are going to prove.

We need a criterion for a stable norm to be positive. For example it is so if the
length function is coarsely geodesic. We wish to strengthen this remark as follows:

Lemma 2. (When the stable norm is a norm) Suppose R" is given with a
proper length function | - | which is «C-uniforms for some C' > 0 in a sense that
for each a € R™ there is a (1, C)-uniform curve « : [0, |a|]] — R™, starting at 0 and
ending distance at most C' from a. Then the associated stable norm || - || is a norm.

Proof. It follows easily from properness of the metric that condition of lemma
holds for standard Euclidean length function | - | with some constant, say . In
particular for each a € R",m € N there is a (1,C’)-uniform (with respect to | - |.)
curve « : [0, |a|] — R™, starting at 0 and ending distance at most C from ma. The
sequence of inequalities

, [jmal]
mlale = Jmal. < |a(lmal)l. < Y Ja(i) = a(i = 1)]e + € < C'([jmal] + 1)

i=1

implies that if a is nonzero, then |ma| grows at least linearly with m for nonzero a,
hence ||a|| is positive. [ |

4. Groups with Cartan projection and stable norms

Definition 3. Suppose that we are given:

1) A group G with a coarsely geodesic length function | - |;

2) Its subgroup A with a fixed isomorphism A ~ R";

3) Action of a reflection group W on A and a Weyl chamber A™.

We say that the map a(g) : G — A% is a Cartan projection if the following
conditions are satisfied:

CP1) The restriction of the map a(g) to A is a Coxeter projection;

CP2) The map a(g) coarsely preserves the norm |- |;

CP3) «Triangle inequality»: a(g) + a(h) — a(gh) € AT for any g, h € G.

We will call an assembly G = (G, ||, A,W, A%, a(g)) a group with Cartan projec-
tion. We fix such one throughout this section. Equally with the above notation, we
write sometimes, a(g) S ag for the Cartan projection. Clearly, for any w € W the
map wa(g) : G — wA" is again a Cartan projection.

Lemma 3. If the length function |- | is proper on A then the Cartan projection is
uniform.
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Proof. Note that
agh — ag € ap — AT
and
agn — a, € —ap-1 + AT

(by Axiom CP3). By properness aj, and aj,-1 are in a bounded subset of R™, hence
so is the intersection of the right hand sides, since

(a—ATHNB+ AT

is compact for any a,b € R™ and hence so is the intersection of the right hand sides.
It follows that |az, — a,4| is bounded whenever |h| is bounded, that is the Cartan
projection is uniform. [ |

By construction of Section 3. associated to the length function on G is the stable
norm on A ~ R™ and we are interested when it is positive.

Lemma 4. The stable norm is positive on A.

Proof. Fix nonzero a € A and let g(t), 0 <t < |ma| be a coarse geodesic in G from
0 to ma. Note that any coarse geodesic is (1, C')-uniform for some C' > 0. Since
Cartan projection is uniform, it follows that the projected curve ayq is uniform
again. It follows that ||a|| is positive by Lemma 2. [

Lemma 5. The stable norm on A is W -invariant.

Proof. Since the restriction of Cartan projection to A is a Coxeter projection, and
it coarsely preserves the norm, we see that the restriction of length function to A is
coarsely W-invariant. Hence the stable norm is WW-invariant. |

Definition 4. We extend a stable norm onto the whole G via Cartan projection:

lgll = ag,9 € G. Similarly, if ¢ is a functional on R", we extend it onto G by

precomposing with Cartan projection.

Lemma 6. Stable norm on G satisfies the triangle inequality:
lghll < llgll + ([

for any g,h € G. Moreover for any functional £ on R", positive with respect to AT,
we have

l(gh) < €(g) + £(h)
for any g, h € GG.
Proof. Triangle inequality for £ immediately follows by application of ¢ to the in-
clusion in the axiom CP3 above. Let g,h € G. If |lag|| is zero then the assertion
is obvious, so we assume that it is nonzero. According to Lemma 1, there exists a

linear functional £ on R™ such that ||¢|| = 1, £(agn) = ||agn||, and £ is positive with
respect to AT, Then applying triangle inequality for ¢ we obtain

lghl| = llagall = €(gh) < €(g) + £(h) = €(ay) + £(an) < |lagll + llan]l = (gl + ||A]].
[ |
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5. Miraculous elements

Let G = (G,|-],A,W, A" a(g)) be a group with Cartan projection and let Cjy be
a constant, such that the length function is Cy-coarsely geodesic and the Cartan
projection Cy—coarsely preserves the length function.

Definition 5. We say that a € R" is C-good, C' > 0, if ||a|| > |a| — C. We say that
a linear functional ¢ is almost supporting at a if ||I|| = 1 and ¢;(a) > ||a|| — 1.

Our aim is to produce C'—good elements ¢ in «every directions.

Lemma 7. There is a constant C' depending only on G and on natural ng such that
for any a € AT with ||al| > 1 and for any finite family L of linear functionals on
R™ coarsely supporting at a, positive with respect to AT and of cardinality at most
ng there is an element g € G such that,

C
lag| = ||a|| and £(ay) > ||a|| — C, € € L. (1)

Proof. Let g(t) : [0,t0] — G be a Cy-coarse geodesic in G from 0 to ma, in particular
Co
to = |mal. We define

for 7 =0,...,m and we define

9; = g(ti—1) (L),

for 1 < 7 < m. We have ma = ¢, -- - g,, and

. o U
g1 = d(g(tj—1), 9(t;) = EO =

for all j. In particular

Co . Co |ma| 1
lag,| = |g;] = al

for m > 0 and we conclude that

2C0+1
lagl "= |lall

for all 7 and m > 0 (take into account that the composition of relations g, 2 s
C+D
)-

lel

Thus, any g; for m > 0 fulfils the first condition in the Lemma. Further, for

€(g;) < llag || < lag;| < 1g;1 + Co < [lal] + Co + 1 (2)

for m > 0. Since any /£ is coarsely supporting and by triangle inequality from
Lemma 6 we have

m(||al| — 1) < £(ma) < Z (3)
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We wish to derive from 2 inequalities above that
U(g;) = |lall = C

for all ¢/ € £ and universal constant C'. For any C' and any ¢ € L we easily conclude
from (2),(3) that

m(Co +2)
Co+C+1

def

bom = #{j 1< <m, Ug;) < lal] = C} <

Thus, taking C' > (ng + 1)(Cy + 2) we obtain that

b __1
m n0+1

for any ¢ € L and for sufficiently large m. From this and the definition of b,,, we
deduce the existence of j, 1 < j < m, such that for all £ € L, ¢(g;) > ||la|| — C and
we take g = g,. [ |

6. Cartan projections of geodesic curves

Let G = (G,| |, A, W, A" a(g)) be a group with Cartan projection and let Cy be
a constant, such that the length function is Cy-coarsely geodesic and the Cartan
projection Cy—coarsely preserves the length function. Our aim is to construct a
continuous curve, consisting entirely of C-good elements and along which the given
finite family of functionals grow coarsely with time.

Lemma 8. There exists a constant C' > 0, depending only on G and on a natural
number ng such that for any a € AT and an arbitrary family L of coarsely supporting
at a functionals, positive with respect to A™, and of cardinality at most ng there exists

a continuous curve a : [0,tg] — AT Lo g la| starting at 0, such that

)| £t and La@)>t—C, te0,t)], (€L (4)

Proof. Let D be a constant exceeding both Cy and the constant given by Lemma 7.
In particular, there is an element g € G such that

jag £ [|al| and £(ag) > |lal| - D, €€ L. (5)

Let g(t) : [0,t9] — G, be a D-coarse geodesic in GG connecting 1 and g, in particular
to 2 lg|. Since the Cartan projection coarsely preserves the length and g¢(¢) is a

D-coarsely geodesic we conclude that |ag] Z lg(t)] Z ¢ and thus lag(] 2 ¢, hence
the curve a,(;) satisfies the first assertion of the Lemma with C' = 2D.
Let ¢/(t) = g(t)~'g, so that g = g(t)g'(t). For £ € L we have

llal| = D < £(g) < (g(t)) + £(g' (1)) < L(g(t)) + lagw]| = Ug(t)) + |9 (t)] =
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— 0(g(1)) + d(g(t), g(to)) 2 (g(1)) +to — .

The equalities |g| Z [|la|| and to Z lg| imply to o lla||, and substituting this to
the above we get
L(g(t)) >t —=5D, 0<t<t,

thus the curve ag4() satisfies the second assertion with C' = 5D.

To make a,(;) continuous we define the curve a(t) as the curve which coincides
with agq) at the integral moments j,0 < j < [{g] and at the moment ¢, and which
is linear on the segments [7,7 + 1],0 < j < [to] = 1, [[to],to] . First note g(¢) and
a(g) are uniform maps, so there is a constant F depending only on G, such that that
la(t) — a([t])| < E,t € ]0,t]. Let C' = E+5D + 1. We have

la(®)] =t < fa(t) — a({th] + [la(t)] -t < B+ 2D,

hence |a(t)] Ctforalte [0,t0]. (We ask the reader to forgive the conflict of
notations for length function on GG and for absolute value for reals). Finally, for any
t € [0,to] and any £ € L we have

ta(t)) = La(lt])) + £(a(t) — a([t]) = [t] = 5D — |a(t) —a(ft)| 2t = E = 5D — 1.

7. Main Theorem

Theorem 3. Let G be a group with Cartan projection. Suppose that the length
function is proper on G. Then

sup |[g| — [lg]l] < oc.
geG

In particular any left invariant, coarsely geodesic, proper metric on G is bounded
distance away from a unique normlike pseudometric on G.

Proof. The main case is ¢ € A ~ R", from which the general case follows easily
by definition of the stable norm on G. Since our length function is proper, || - || is
a norm. Fix a real » > 0 and let B, C A be a unit ball of radius r about origin.
In this proof we define a continuous map ¢ : B, — R™, such that ¢(B,) consists
entirely of C-good points and the image contains By ,_c. The last claim is proved
using a topological argument, namely the degree of maps between spheres.

Applying standard arguments, one can show that there exists a triangulation 7°
of the boundary 0B, such that each simplex of 7 has || - ||-diameter < 1/2 and lies
entirely in some Weyl chamber. Let 7, denote the barycentric subdivision of 7. For
any simplex o in either 7 or 7,, we denote by V, the set of vertices in 0. Let o,
denote the smallest simplex in 7 which contains a given x € 0B,.

According to Lemma 1, for any nonzero x € R", one can find a linear functional
l, on R™ such that ||¢,]| = 1, £,(x) = ||z||, and ¢, is positive with respect to any
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Weyl chamber containing x. Note that ¢, is almost supporting at any point of .
Indeed, for y € 0, we have

C(y) = |zl + Loy — 2) > [lyl| = 2lly — =[] > [lyl| - 1.
For each vertex v € 7, we define the set of functionals
L,={ly:ueV,}.

Note that this set satisfies the conditions of the Lemma 8. Indeed, the functionals
are of norm 1, they are almost supporting at v by previous remark, and if wA™
is any Weyl chamber, containing v, then the simplex o, is contained in wA" too,
hence all functionals are positive with respect to wA™. Now by Lemma 8 for some
C' > 0, depending only on G we find a continuous curve « : [0, t,] — R", such that

()] £t 0<t<t, t, <], a0)=0,

and
ly(ay(t)) >t —C for any u € V,,.

We now define a continuous map ¢ : B, — R" as follows. Take any z € 0B,, and
let o be a simplex in 7, which contains z. Represent z as a convex linear combination

z = E Ay 20,

and define
o(s2) = Z ay(shysty), 0<s< 1
vEV,

It is clear that the nonzero coefficients ), , in the decomposition above do not depend
on the choice of o. Therefore p(tz) does not depend on the choice of o either. Since
the curves {a,(s)} are continuous, the map ¢ : B, — R" is continuous.

Claim. ¢(B,) consists of C-good points.

Since 7, is the barycentric subdivision of 7, one can find a vertex u in ¢ such
that uw € V,, for all v € V,,. Then it follows

||QO(SZ)|| > eu(@(sz)) = Z eu(av(S/\mzav)) > Z 3>\v,zav -C>

veV (o) veVs
Z |y (sAy 2a0)| — C > | Z ay(shyan)| — C = |p(s2)] — C.
vEV, vEV,

Let {¢x}, A € ]0,1] be a linear homotopy between identity and ¢. It follows from
inequalities above that

loa(2)]l > Lulpa(2)) = Lu(Ap(2) + (L = N)z) > 71 = C
for any z € 0B, and 0 < X\ < 1. We get from above that
Br—C—l N SO)\(aBT)

for any 0 < XA < 1. The following topological lemma finish the proof.
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Lemma 9. Suppose that a continuous map f : B, — R"™ satisfies the following
property: t By_c_1 N f[x(0B,)) for any 0 < X < 1, where f\ is a linear homotopy
between identity and f. Then the image f(B,) contains B,_c_1 for all v sufficiently
large.

Proof. Arguing by contradiction, suppose that f(B,) does not contain a point
y € B,_c_1. By assumption the restrictions of Id and f to 0B, are homotopic
as maps into R" — {y}. Composing with projection map of the last space onto
the sphere S,, we obtain that the identity map of the sphere is homotopic to the
constant map - this contradicts to the well known fact (the continuous maps of the
sphere into itself of different degree are not homotopic). This contradiction proves
the Lemma. |

Theorem is proved. |

8. Examples of groups with Cartan projection

The notion of a group with a Cartan projection is motivated by the classical Cartan
decomposition for semisimple or, more generally, reductive Lie groups. Let

G = G(R)°

be the connected component of the identity of the group G(R) of R-rational points
of a reductive R-group G. Fix a proper coarsely geodesic length function |- | on G.
Let A be a maximal R-split torus in G and A = A(R)°. The group A is isomorphic
to R™ where n = dim A. Let AT C A be a Weyl chamber for the Weyl group
W = Na(A)/Za(A).

Theorem 4. The assembly G = (G, |- |,A,W, AT a(g)) is a group with Cartan
projection.

Proof. It is well known that G admits a Cartan decomposition G = K AT K, where
K is a suitable maximal compact subgroup of G and that associated «Cartan pro-
jections

a(g): G — A"

is well defined. Moreover, if w € W and a € AT then w(a) € KaK, and this implies
that the restriction of a(g) onto A is a Coxeter projection, thus CP1) is fulfilled.
Since K is compact and the length function is proper, it follows that the Cartan
projection coarsely preserves the length function, hence CP2).

The axiom CP3) is rather nontrivial and relies on the presentation of positive
linear functionals as linear combinations of highest weights of rational representa-
tions [5]. Let # : G — GL(V) be a rational representation of the group G defined
and irreducible over R. We decompose V' into the direct sum

V=D V. W#{0} (6)

XEX(A)
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of the weight spaces

def

Vy={veV|n(a)v=x(a)v forany aec A},

where X (A) is the group of rational characters of A. Let u, € X(A) be the highest
weight of the representation 7. Then

x(a@) < pg(a) if a€ At and V, #{0}. (7)

It is well known that one can introduce a m(K)-invariant inner product on V'
with respect to which the transformations 7(a),a € A, are self-adjoint. Then the
subspaces V, in the decomposition (6) are mutually orthogonal, and it follows from
(7) that ||7(g)|| = ur(a(g)), for any g € G, where the norm is taken with respect to
the inner product just defined. As a consequence, we get that for any g, h € G,

log i (a(gh)) <log ur(a(g)) + log pr(a(h)). (8)

It is well known that any linear functional £ on A = R", which is positive with
respect to AT, can be represented as a positive linear combination

(=7 bilog s, b >0,
i=1

where 7;, 1 < i < m, are rational representations of (&, defined and irreducible over
R. Then it follows from (8) that for any g,h € G,

(a(gh)) < L(a(g)) + L(a(h)). (9)
Since { is an arbitrary positive functional we get from this and the definition of
AT that the axiom CP3) is satisfied. |

9. Generalizations, questions, problems

The notion of a group with a Cartan projection used above is not enough to treat
the case of reductive groups over local fields. The generalization is given in [1| and
here we give a sketch. Namely we must allow not only R™ but any closed cocompact
group D of R™. An action of a reflection group W on R" should leave D invariant
and there must be a compact symmetric set M C R™, containing 0, such that for
each w € W there is an inclusion

wAT C(DNwA™T) + M.
We say that the map
a(g) : G — AT

is a Cartan projection if CP1), CP2) are satisfied and CP3) is satisfied in the following
relaxed form:
a(g) +a(h) —a(gh) € AT+ M
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for any g, h € GG. The generalization includes the case of invariant metrics on Z" as
well as invariant metrics on R"™, but seems it does not include the case of Z"-invariant
metrics on R™, which were treated by D. Burago [6].

Question 1. Is the analog of Abels-Margulis theorem for lattices in a reductive
group valid? (Presumably not). The same question for the metrics on a reductive
group invariant under translations by the elements of the lattice. (The answer is
presumably yes).

Question 2. What is the relation of the triangle inequality for stable norm to
the Gelfand-Naimark theorem about singular values of the product of matrices?

Question 3. What is the analog of Abels-Margulis theorem for nilpotent, solv-
able, general Lie groups? Look at the S. Krat paper.

Question 4 What is the structure of the asymptotic cone of a reductive group
with a normlike pseudometric? Presumably they are Minkowski buildings. The ques-
tion is related to the results of Kleiner-Leeb, Thornton, Parreaut.

Question 5 What is the relation between Abels-Margulis and Berestovsky the-
orems? For example, could one calculate a normlike pseudometric associated to a
Carnot-Caratheodory-Finslerian metric on a reductive group?

Question 6. Let M be a set provided with two interior metrics d; and ds.
Assume that a group GG acts cocompactly on M by isometries with respect to both
metrics and

dl ('T ) y)

lim =1. 10
da(z,y)—o0 d2 (.T, y) ( )

Due to a result of D. Burago [6], if G = Z", then d1, ds are coarsely equivalent. This
fact means that all metrics on M diverge linearly or stay within a finite distance from
each other. Burago raised the question for which groups the same statement could
be true. The Abels-Margulis result easily implies the positive answer for metrics
on reductive groups. D. Burago suggested two different directions. The first is the
case of semi-hyperbolic groups, i.e., groups of isometries of a space whose curvature
is bounded from above by 0. The other one is the case of nilpotent groups and
first of all, the Heisenberg group. In some cases the fact that two metrics cannot
diverge more slowly than linearly could be described as the finiteness of the Gromov-
Hausdorff distance between the group with induced metric and its asymptotic cone.
In the case of the abelian group Z" the asymptotic cone is R and it lies within a
finite Gromov-Hausdorff distance from Z". The Gromov-Hausdorff distance between
Heisenberg groups and its asymptotic cone is finite |[7].
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