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Abstract. Often, several different algorithms can solve a certain practical
problem. Sometimes, algorithms which are successful in solving one problem
can solve other problems as well. How can we decide which of the original
algorithms is the most promising – i.e., which is more probable to be able to
solve other problem? In many cases, the simplest algorithms turn out to be
the most successful. In this paper, we provide a possible explanation for this
empirical observation.
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1. Empirical Fact

Search for efficient algorithms. Many practical problems appear all the time.
Often, several different algorithms are all successful in solving a certain specific
practical problem. Once an algorithm is successful in solving a specific problem,
it is reasonable to check if this algorithm – or its modification – can also be used
to solve other similar problems.

An empirical observation. In her plenary talk at the IEEE Series of Symposia on
Computational Intelligence SSCI’2014 (Orlando, Florida, December 9–12, 2014),
Dr. Alice Smith mentioned the following interesting empirical observation [2]:
among several successful algorithms for solving a specific problem, usually, simpler
ones are the most promising – in the sense that these algorithms and/or their
modifications are most successful in solving other problems.

How can we explain this empirical observation?

Comment. This observation is similar to the well-known Occam razor, according to
which, among several possible hypotheses explaining empirical data, it is beneficial
to select the simplest one.

What we plan to do. In this paper, we provide a possible theoretical explanation
for this empirical observation.
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A known formalization of Occam’s razor is based on Kolmogorov complexity
(see, e.g., [1]); similarly, our explanation of the above similar empirical fact will
also use a similar (but more general) notion of complexity.

2. Analysis of the Problem

Problem: reminder. We have several algorithms x, with different complexity
c(x). Complexity can be described in different ways: as a number of bits of words in
the description of an algorithm, as a weighted number, as Kolmogorov complexity
K(x) (i.e., the length of the shortest program that can print the description of x;
see [1]), etc.

Based on these complexity values, we want to predict how far each of these
algorithms is from the ideal. The corresponding “distance” d(x) of an algorithm
x can be also measured differently: as average computation time on a certain set
of practical problems, as the worst-case computation time, as a more complex
characteristic that takes into account average or worst-case accuracy of the result,
etc. Once we know the distances d(x), we can select the algorithms which are
most promising in the sense that they are the closest to the ideal – i.e., the
corresponding distances d(x) are the smallest.

Idea. Of course, the distance d(x) is not a function of complexity: we can have
more complex algorithms which are more efficient and thus closer to the ideal, and
we can have added complexity that only decreases the algorithm’s efficiency. So,
if we have two algorithms x and y with different complexities c(x) < c(y), then we
cannot definitely conclude whether d(x) < d(y) or d(x) > d(y). However, what we
can try to do is see what happens on average, over different pairs of algorithms:

� if, over all pairs with c(x) < c(y), the average value of the difference
d(x) − d(y) is negative, then, in the absence of any other information, it
is reasonable to conclude that

when c(x) < c(y), then d(x) < d(y);

in this case, the simpler algorithms are the most promising;

� on the other hand, if, over all pairs with c(x) < c(y), the average value
of the difference d(x) − d(y) is positive, then, in the absence of any other
information, it is reasonable to conclude that

when c(x) < c(y), then d(x) > d(y);

in this case, the more complex algorithms are more promising.

From this viewpoint, we need to analyze whether the average value of the difference
d(x)− d(y) is positive or negative.
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Main assumption. In principle, we can have different measures of complexity.
However, all possible measures have one common property: that for each level c,
there are only finitely many algorithms x for which c(x) ≤ c.

Indeed, no matter whether we count number of bits, number of words, number
of lines, or some weighted number, once this number is fixed, there are only finitely
many possible places for different symbols, and thus, only finitely many possible
combinations of symbols.

Similarly, no matter how we measure the distance d(x), for each level d, there
are only finitely many algorithms x for which d(x) ≤ d.

Indeed, whether d(x) describes the average number of elementary computational
steps on a given finite set of practical examples, or the largest number of steps,
a limitation on d(x) implies a limitation on the number of steps on each of these
examples. Since we have a bound on the number of computational steps, and there
are only finitely many possible choices for each step, we end up with finitely many
possible algorithms.

Let us show that these two properties are sufficient to determine the sign of
the average value of the difference d(x)− d(y).

3. Main Result

Definition 1.

� Let X be a countable set of words in a given language. Elements of this
set will be called algorithms.

� Let us assume that two functions c and d are defined, both functions
transform elements x ∈ X into positive real numbers c(x) > 0 and d(x) > 0.

� The value c(x) will be called complexity of an algorithm x, while the value
d(x) will be called the distance of an algorithm x from the ideal case.

� We assume that for every positive number c, there are only finitely many
algorithms x for which c(x) ≤ c.

� We also assume that for every positive number d, there are only finitely
many algorithms x for which d(x) ≤ d.

� Let us assume that for every c > 0, there exists a function that assigns to
each algorithm x with c(x) = c, a number w(x) > 0 (called its weight) in
such a way that

∑
x:c(x)=c

w(x) = 1.

� For each c > 0, the average distance dav(c) is defined as
∑

x:c(x)=c

w(x) · d(x).

� For each k > 0, n0, and n > n0, the average value A(k, n0, n) is defined as

A(k, n0, n) =
1

n− n0 + 1
·

n∑
c=n0

(dav(c)− dav(c− k)).
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Comment. The value A(k, n0, n) is the average difference between the non-idealness
of algorithms of larger complexity c and algorithms of smaller complexity c− k:

� If this difference is positive, this means that more complex algorithms are
further from ideal than simpler algorithms, i.e., that simpler algorithms are
more efficient.

� If this difference is negative, this means that more complex algorithms are
closer to the ideal than simpler algorithms, i.e., that more complex algo-
rithms are more efficient.

We prove the following result:

Proposition. For every k > 0 and n0, there exists an integer N such that for all
n ≥ N , we have A(k, n0, n) > 0.

Discussion. In other words, we prove that, on average, simpler algorithms are
closer to the ideal and thus, more efficient. This is exactly what we wanted to
explain.

Proof.

1◦. Let us first notice that the difference dav(c)−dav(c−k) in which the algorithms’
complexity differs by k can be represented as the sum of k differences in which
this difference is 1:

dav(c)− dav(c− k) = (dav(c)− dav(c− 1)) + (dav(c− 1)− dav(c− 2)) + . . .+

+(dav(c− (k − 1))− dav(c− k)).

Thus, it is sufficient to prove that the average value of this difference is positive
for k = 1; once this is proven, the average value of the larger difference will also
be positive, as the sum of k positive terms.

Because of this fact, in the following proof, we will only consider the case
k = 1.

2◦. For k = 1, we can simplify the expression A(1, n, n0), since

n∑
c=n0

(dav(c)− dav(c− 1)) =

= (dav(n0)− dav(n0 − 1)) + ((dav(n0 + 1)− dav(n0)) + . . .+ (dav(n)− dav(n− 1)).

Here, the term dav(n0) appears both with a plus sign and with a minus sign, and
there two occurrences cancel each other. Similarly, all other terms disappear, and
the only remaining terms are −dav(n0 − 1) and dav(n). Thus,

n∑
c=n0

(dav(c)− dav(c− 1)) = dav(n)− dav(n0 − 1).
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For n0 < n, the denominator n−n0+1 is always positive, so the value A(1, n0, n)
is positive if and only if

n∑
c=n0

(dav(c)− dav(c− 1)) = dav(n)− dav(n0 − 1) > 0,

i.e., if and only if dav(n) > dav(n0− 1). So, to prove the Proposition, it is sufficient
to prove that dav(n) > dav(n0 − 1) for all sufficiently large n.

We will prove an even stronger statement: that dav(n) → ∞ when n → ∞.
Moreover, we will prove that dmin(n)→∞, where

dmin(c)
def
= min

x:c(x)=c
d(x).

Since dav(c) is a weighted average (with positive weights adding up to 1) of the
values d(x) with c(x) = c, and each of these values d(x) is greater than or equal
to dmin(c), we thus conclude that dav(c) ≥ dmin(c) and hence, dmin(n)→∞ implies
dav(n)→∞.

3◦. We will prove that dmin(n) → ∞ by contradiction. The desired convergence
means that

∀M ∃N ∀n (n ≥ N → dmin(n) ≥M).

Let us assume that this convergence statement is not true. This means that

∃M ∀N ∃nN (nN ≥ N & dmin(nN) < M).

By definition of the function dmin(c), the value dmin(nN) is the smallest of all the
distances d(x) for algorithms x of complexity c(x) = nN . Let xN be the algorithm
of complexity c(xN) = nN for which this distance is the smallest, i.e., for which
d(xN) = dmin(nN). Then, for every N , we have d(xN) < M and c(xN) = nN ≥ N
– hence c(xN) ≥ N .

On the other hand, by definition of a distance function, there are only finitely
many algorithms with distance < M . Let c0 denote the largest of the complexities
for all these algorithms. Then, d(xN) < M implies that c(xN) ≤ c0. On the other
hand, for N = c0 + 1, we should have c(xN) ≥ N > c0, i.e., c(xN) > c0 – a
contradiction.

This contradiction proves that our assumption that dmin(n) 6→ ∞ is wrong, and
thus, indeed, dmin(n) → ∞. Therefore, dav(n) → ∞. As we have already shown,
this convergence implies the proposition. The statement is proven.

Note added in proof. Similarly, we can conclude that, on average, different
measures of “distance from the ideal” are correlated: when we improve one of
these measures, then, on average, other measures are improved too. For example,
optimizing compilers that speed up computations by transforming expressions into
faster-to-compute ones — e.g., a · b+ a · c into a · (b+ c) also, in many cases, help
increase the computation accuracy (e.g., for interval computations). In general, this
correlation explains why algorithms can be – to use pharmaceutical terminology
— re-purposed: algorithms designed with one objective in mind often work well
for different objectives as well.
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Аннотация. Часто несколько разных алгоритмов могут решить определённые
практические проблемы. Иногда алгоритм, который успешно решает одну пробле-
му, может решить и другие проблемы. Как мы можем решить, какой из исходных
алгоритмов является наиболее перспективным — то есть, что более вероятно, что
он в состоянии решить другие проблемы? Во многих случаях простейший из ал-
горитмов оказывается наиболее успешным. В этой статье мы приводим возможное
объяснение этого эмпирического наблюдения.
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