О СВЯЗИ КОМПАКТНОСТИ И ПРИЧИННОСТИ

А.Н. Романов

доцент, к.ф.-м.н., e-mail: aroms@ya.ru

Омский государственный университет им. Ф.М. Достоевского

Аннотация. В статье рассматривается связь между поведением причинной структуры пространства-времени и его топологией, а именно, уделяется внимание изучению причин наличия или отсутствия замкнутости множеств причинного прошлого и будущего в зависимости от условия компактности множеств, связанных с причинным будущим и прошлым точек пространства-времени. Приведён пример, когда наличие замкнутых некомпактных множеств пространства-времени, связанных с причинным будущим или прошлым какой-либо точки, влечёт за собой факт незамкнутости причинного прошлого и будущего некоторых точек.

Ключевые слова: пространство-время, компактность, причинность.

В данной статье мы рассмотрим некоторые вопросы, касающиеся связи свойства компактности замыканий причинных прошлого и будущего точек пространства-времени и замкнутости этих же множеств причинного прошлого и будущего точек. Общая идея состоит в том, что некоторая информация о поведении причинной структуры пространства-времени позволяет делать некоторые выводы о его топологической структуре.

Для начала приведем уже известное утверждение (см. [1], теорема 3.30): Пространство-время (M,g) глобально гиперболично тогда и только тогда, когда оно сильно причинно и (M,g') удовлетворяет условию конечности расстояния для всех $g' \in C(M,g)$.

Здесь через C(M,g) обозначен класс лоренцевых метрик на многообразии M, глобально конформных метрике g :

$$q' \in C(M, q) \Leftrightarrow q' = \Omega q$$

для некоторой гладкой функции $\Omega: M \to (0, \infty)$.

Это утверждение справедливо при довольно сильном условии сильной причинности пространства-времени. Мы же постараемся сделать некоторые выводы относительно более широкого класса пространств.

А именно, покажем, что если пространство-время (M,g) принадлежит классу A и если для некоторых точек $p,s\in M$ множество $J_p^+\cap J_s^-$ не замкнуто в M, а $I_p^+\cap I_s^-\neq\emptyset$, то тогда (замкнутое) множество $cl(J_p^+\cap J_s^-)$ не является компактным

Для начала определим некоторый класс пространств, относительно которого выдвинуто приведённое утверждение. А именно, из всех пространств, допускающих незамкнутые множества причинного прошлого или будущего, выделим

определённый класс и обозначим его через B, разделив таким образом лоренцевы многообразия на два непересекающихся класса: B и A (к этому классу отнесём все остальные пространства, не вошедшие в B). Класс B характеризуется следующим свойством. Пусть между точками $p,s\in M$ выполнены следующие соотношения: $s \in cl(J_p^+)$, но $s \notin J_p^+$. Таким образом, любую окрестность U_s точки $s \in M$ можно достичь направленной в будущее причинной кривой γ , выходящей из p, однако, сама точка s остаётся недостижимой. Допустим теперь, что имеет место следующая ситуация: существует настолько малая окрестность U_s точки s, что для того, чтобы достичь её направленной в будущее причинной кривой, выходящей из p, необходимо, чтобы, во-первых, эта кривая γ целиком находилась бы в некотором (фиксированном) компактном множестве K, а вовторых, её риманова длина (измеренная в любой заранее выбранной римановой метрике), была бы больше любого наперёд заданного положительного числа N. Другими словами, чтобы «подойти» достаточно близко к точке s, причинная кривая γ должна совершить достаточно большое количество «оборотов» во множестве K.

Если такая ситуация имеет место в некотором многообразии (M,g), то будем относить его к классу B, в противном случае будем считать данное лоренцево многообразие относящимся к классу A.

В двумерном случае все пространства из класса B являются не хронологическими, то есть содержат замкнутые времениподобные кривые.

В качестве примера приведём цилиндр с выколотой точкой:

$$M = \mathbb{R} \times S = \{t, \theta\} \setminus (0, 0).$$

Допустим, что причинная структура этого пространства-времени обладает следующим свойством (конкретная запись метрики нам не важна): при приближении к множеству $\{t=0\}$ конусы будущего наклоняются так, что причинные кривые могут лишь асимптотически приближаться к точкам $\{t=0\}$, но достичь их не могут. Тогда если $s\in\{t=0\}$, то для некоторых точек $p\in M$ выполнены соотношения: $s\in cl(J_p^+)$, но $s\notin J_p^+$. Такое пространство-время как раз является пространством класса B.

В качестве гипотезы можно выдвинуть предположение, что к классу B относятся лишь многообразия, не являющиеся причинными, то есть содержащие замкнутые причинные кривые. Однако это утверждение требует отдельного доказательства.

Теперь перейдём к доказательству основного утверждения, которое было сформулировано выше. Допустим, что множество $cl(J_p^+ \cap J_s^-)$ компактно. Так как множество $J_p^+ \cap J_s^-$ не замкнуто, то существует точка $q \in cl(J_p^+ \cap J_s^-)$ такая, что $q \notin J_p^+ \cap J_s^-$. В этом случае $q \notin J_p^+$ (случай $q \notin J_s^-$ доказывается аналогично).

Рассмотрим последовательность точек $\{q_n\}\subset J_p^+\cap J_s^-$ такую, что при $n\to\infty,\,q_n\to q,$ то есть сходящуюся к q (сходимость в исходной топологии многообразия M). Таким образом, для последовательности $\{q_n\}$ имеем:

$$p \leqslant q_n, q_n \to q$$
.

Так как $p\leqslant q_n$, то для каждого номера n существует причинная кривая γ_n , идущая из p в q_n . Продолжим γ_n до непродолжаемой причинной кривой. Так как $q_n\to q$, то любая окрестность точки q содержит все точки q_n , начиная с некоторого n. А так как $q_n\in\gamma_n$, то q является точкой накопления последовательности причинных непродолжаемых кривых $\{\gamma_n\}$. Отсюда следует (см. [1], предложение 2.18), что существует причинная непродолжаемая кривая γ , являющаяся предельной для последовательности $\{\gamma_n\}$, и такая, что $q\in\gamma$. Выберем параметризацию γ так, что $\gamma:(-\infty,\infty)\to M$ и $\gamma(0)=q$, причём уменьшение параметра t кривой γ соответствует движению по ней в прошлое.

Рассмотрим часть кривой γ , идущую в прошлое от точки $q:\gamma(-\infty,0]$. Заметим, что для любой точки $a\in\gamma(-\infty,0]$ выполняется соотношение: $a\in cl(J_p^+)$.

Действительно, так как γ — предельная кривая последовательности $\{\gamma_n\}$, то существует подпоследовательность $\{\gamma_m\} \subset \{\gamma_n\}$ такая, что для любой точки $a \in \gamma$ каждая её окрестность U_a пересекает все, за исключением конечного числа, кривые из $\{\gamma_m\}$. Взяв точки r_m такие, что для всех номеров m выполнены соотношения $r_m \in \{\gamma_m\}, r_m \in U_a$, получим сходящуюся к a последовательность $r_m: r_m \to a$. Если выполнено ещё соотношение $r_m \in J_p^+$, то получим, что $a \in cl(J_p^+)$. В данном случае включение $r_m \in J_p^+$ выполняется всегда. В самом деле, если $r_m \notin J_p^+$, то это означает, что кривая γ (вместе с кривыми γ_m) покинула область $cl(J_p^+)$. Однако выйти из $cl(J_p^+)$ γ может лишь через точку p, так как все γ_m «фокусируются» в p (по их определению), а γ — предельная кривая для последовательности $\{\gamma_m\}$. Но такого быть не может, так как это означало бы существование отрезка (лежащего на кривой γ), соединяющего точки p и являющегося частью причинной кривой $(\gamma$ — причина), что противоречит выбору точки $q: q \notin J_p^+$.

Таким образом, мы показали, что для любой точки $a \in \gamma(-\infty,0]$, a принадлежит множеству $cl(J_p^+): a \in cl(J_p^+)$. Ясно, что выполнено также включение $a \in cl(J_p^+ \cap J_s^-)$ (так как из соотношений $a \leqslant q, q << r$ следует соотношение a << r, то есть $a \in int J_s^-$).

В результате имеем: часть кривой γ , идущая в прошлое от точки q, целиком находится во множесте $cl(J_p^+ \cap J_s^-)$, которое по сделанному предположению является компактным. Таким образом, имеет место явление захвата.

По построению кривой γ (см. [1], предложение 2.18), последовательность $\{\gamma_m\}$ сходится к γ равномерно на любом компактном множестве из IR в случае, если кривые γ и γ_m параметризованы длиной дуги, вычисленной относительно (полной) римановой метрики.

Так как ни для какого значения параметра $t\leqslant 0$ кривая γ не покидает множества $cl(J_p^+\cap J_s^-)$, а последовательность $\{\gamma_m\}$ сходится к γ равномерно на любом компактном множестве из \mathbb{R} (то есть кривые $\{\gamma_m\}$ «повторяют» движение γ), то получаем следующую ситуацию: если взять достаточно малую окресность U_q точки q, то длины кривых $\{\gamma_m\}$, достигающих этой окресности, с необходимостью должны быть больше любого наперёд заданного положительного числа N. Однако это означает, что пространство-время (M,g) принадлежит классу B, в то время как по условию (M,g) принадлежит классу A.

Полученное противоречие опровергает сделанное предположение о том, что множество $cl(J_p^+ \cap J_s^-)$ компактно, и тем самым доказывает наше утверждение.

Литература

- 1. Бим Дж., Эрлих П. Глобальная лоренцева геометрия. М.: Мир, (1985).
- 2. Романов А. Отображения пространства-времени и условия причинности // Тезисы докладов конференции по Анализу и Геометрии. Новосибирск : ИМ СО РАН, 2004. 219 с.

ABOUT COMPACTNESS AND CAUSALITY

A.N. Romanov

Ph.D. (Phys.-Math.), Associate Professor, e-mail: aroms@ya.ru

Dostoevsky Omsk State University

Abstract. The article discusses the relationship between the behavior of the causal structure of space-time and its topology, namely, attention is paid to the study of the causes of the presence or absence of a causal closure sets of the past and the future depending on the conditions of compactness sets associated with past and future causal space-time points. An example, when the presence of closed non-compact sets of the space-time associated with the cause of future or past of any point entails the fact of not closed causal past and the future of some points, is given.

Keywords: space-time, compactness, causality.

Дата поступления в редакцию: 27.01.2017